Visible to the public Biblio

Found 934 results

Filters: Keyword is Servers  [Clear All Filters]
2017-12-20
Maleki, H., Rahaeimehr, R., Jin, C., Dijk, M. van.  2017.  New clone-detection approach for RFID-based supply chains. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :122–127.

Radio-Frequency Identification (RFID) tags have been widely used as a low-cost wireless method for detection of counterfeit product injection in supply chains. In order to adequately perform authentication, current RFID monitoring schemes need to either have a persistent online connection between supply chain partners and the back-end database or have a local database on each partner site. A persistent online connection is not guaranteed and local databases on each partner site impose extra cost and security issues. We solve this problem by introducing a new scheme in which a small Non-Volatile Memory (NVM) embedded in RFID tag is used to function as a tiny “encoded local database”. In addition our scheme resists “tag tracing” so that each partner's operation remains private. Our scheme can be implemented in less than 1200 gates satisfying current RFID technology requirements.

Koning, R., Graaff, B. D., Meijer, R., Laat, C. D., Grosso, P..  2017.  Measuring the effectiveness of SDN mitigations against cyber attacks. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–6.
To address increasing problems caused by cyber attacks, we leverage Software Defined networks and Network Function Virtualisation governed by a SARNET-agent to enable autonomous response and attack mitigation. A Secure Autonomous Response Network (SARNET) uses a control loop to constantly assess the security state of the network by means of observables. Using a prototype we introduce the metrics impact and effectiveness and show how they can be used to compare and evaluate countermeasures. These metrics become building blocks for self learning SARNET which exhibit true autonomous response.
Lukaseder, T., Hunt, A., Stehle, C., Wagner, D., Heijden, R. v d, Kargl, F..  2017.  An Extensible Host-Agnostic Framework for SDN-Assisted DDoS-Mitigation. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :619–622.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar

Liu, Z., Liu, Y., Winter, P., Mittal, P., Hu, Y. C..  2017.  TorPolice: Towards enforcing service-defined access policies for anonymous communication in the Tor network. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Tor is the most widely used anonymity network, currently serving millions of users each day. However, there is no access control in place for all these users, leaving the network vulnerable to botnet abuse and attacks. For example, criminals frequently use exit relays as stepping stones for attacks, causing service providers to serve CAPTCHAs to exit relay IP addresses or blacklisting them altogether, which leads to severe usability issues for legitimate Tor users. To address this problem, we propose TorPolice, the first privacy-preserving access control framework for Tor. TorPolice enables abuse-plagued service providers such as Yelp to enforce access rules to police and throttle malicious requests coming from Tor while still providing service to legitimate Tor users. Further, TorPolice equips Tor with global access control for relays, enhancing Tor's resilience to botnet abuse. We show that TorPolice preserves the privacy of Tor users, implement a prototype of TorPolice, and perform extensive evaluations to validate our design goals.
Lacerda, A., Rodrigues, J., Macedo, J., Albuquerque, E..  2017.  Deployment and analysis of honeypots sensors as a paradigm to improve security on systems. 2017 Internet Technologies and Applications (ITA). :64–68.
This article is about study of honeypots. In this work, we use some honeypot sensors deployment and analysis to identify, currently, what are the main attacks and security breaches explored by attackers to compromise systems. For example, a common server or service exposed to the Internet can receive a million of hits per day, but sometimes would not be easy to identify the difference between legitimate access and an attacker trying to scan, and then, interrupt the service. Finally, the objective of this research is to investigate the efficiency of the honeypots sensors to identify possible safety gaps and new ways of attacks. This research aims to propose some guidelines to avoid or minimize the damage caused by these attacks in real systems.
Sevilla, S., Garcia-Luna-Aceves, J. J., Sadjadpour, H..  2017.  GroupSec: A new security model for the web. 2017 IEEE International Conference on Communications (ICC). :1–6.
The de facto approach to Web security today is HTTPS. While HTTPS ensures complete security for clients and servers, it also interferes with transparent content-caching at middleboxes. To address this problem and support both security and caching, we propose a new approach to Web security and privacy called GroupSec. The key innovation of GroupSec is that it replaces the traditional session-based security model with a new model based on content group membership. We introduce the GroupSec security model and show how HTTP can be easily adapted to support GroupSec without requiring changes to browsers, servers, or middleboxes. Finally, we present results of a threat analysis and performance experiments which show that GroupSec achieves notable performance benefits at the client and server while remaining as secure as HTTPS.
Dong, B., Wang, H.(.  2017.  EARRING: Efficient Authentication of Outsourced Record Matching. 2017 IEEE International Conference on Information Reuse and Integration (IRI). :225–234.

Cloud computing enables the outsourcing of big data analytics, where a third-party server is responsible for data management and processing. In this paper, we consider the outsourcing model in which a third-party server provides record matching as a service. In particular, given a target record, the service provider returns all records from the outsourced dataset that match the target according to specific distance metrics. Identifying matching records in databases plays an important role in information integration and entity resolution. A major security concern of this outsourcing paradigm is whether the service provider returns the correct record matching results. To solve the problem, we design EARRING, an Efficient Authentication of outsouRced Record matchING framework. EARRING requires the service provider to construct the verification object (VO) of the record matching results. From the VO, the client is able to catch any incorrect result with cheap computational cost. Experiment results on real-world datasets demonstrate the efficiency of EARRING.

2017-12-12
Fatayer, T. S. A..  2017.  Generated Un-detectability Covert Channel Algorithm for Dynamic Secure Communication Using Encryption and Authentication. 2017 Palestinian International Conference on Information and Communication Technology (PICICT). :6–9.

The keys generated by (symmetric or asymmetric) have been still compromised by attackers. Cryptography algorithms need extra efforts to enhance the security of keys that are transferring between parities. Also, using cryptography algorithms increase time consumption and overhead cost through communication. Encryption is very important issue for protecting information from stealing. Unfortunately encryption can achieve confidentiality not integrity. Covert channel allows two parties to indirectly send information, where the main drawbacks of covert channel are detectability and the security of pre-agreement knowledge. In this paper, i merge between encryption, authentication and convert channel to achieve un-detectability covert channel. This channel guarantee integrity and confidentiality of covert data and sending data dynamically. I propose and implement un-detectability a covert channel using AES (Advanced Encryption Standard) algorithm and HMAC (Hashed Message Authentication Code). Where this channel is un-detectability with integrity and confidentiality agreement process between the sender and the receiver. Instead of sending fake key directly through channel, encryption and HMAC function used to hide fake key. After that investigations techniques for improving un-detectability of channel is proposed.

Kogos, K. G., Seliverstova, E. I., Epishkina, A. V..  2017.  Review of covert channels over HTTP: Communication and countermeasures. 2017 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :459–462.

Many innovations in the field of cryptography have been made in recent decades, ensuring the confidentiality of the message's content. However, sometimes it's not enough to secure the message, and communicating parties need to hide the fact of the presence of any communication. This problem is solved by covert channels. A huge number of ideas and implementations of different types of covert channels was proposed ever since the covert channels were mentioned for the first time. The spread of the Internet and networking technologies was the reason for the use of network protocols for the invention of new covert communication methods and has led to the emergence of a new class of threats related to the data leakage via network covert channels. In recent years, web applications, such as web browsers, email clients and web messengers have become indispensable elements in business and everyday life. That's why ubiquitous HTTP messages are so useful as a covert information containers. The use of HTTP for the implementation of covert channels may increase the capacity of covert channels due to HTTP's flexibility and wide distribution as well. We propose a detailed analysis of all known HTTP covert channels and techniques of their detection and capacity limitation.

Zander, S..  2017.  Detecting Covert Channels in FPS Online Games. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :555–558.

Encryption is often not sufficient to secure communication, since it does not hide that communication takes place or who is communicating with whom. Covert channels hide the very existence of communication enabling individuals to communicate secretly. Previous work proposed a covert channel hidden inside multi-player first person shooter online game traffic (FPSCC). FPSCC has a low bit rate, but it is practically impossible to eliminate other than by blocking the overt game trac. This paper shows that with knowledge of the channel’s encoding and using machine learning techniques, FPSCC can be detected with an accuracy of 95% or higher.

That, D. H. T., Fils, G., Yuan, Z., Malik, T..  2017.  Sciunits: Reusable Research Objects. 2017 IEEE 13th International Conference on e-Science (e-Science). :374–383.

Science is conducted collaboratively, often requiring knowledge sharing about computational experiments. When experiments include only datasets, they can be shared using Uniform Resource Identifiers (URIs) or Digital Object Identifiers (DOIs). An experiment, however, seldom includes only datasets, but more often includes software, its past execution, provenance, and associated documentation. The Research Object has recently emerged as a comprehensive and systematic method for aggregation and identification of diverse elements of computational experiments. While a necessary method, mere aggregation is not sufficient for the sharing of computational experiments. Other users must be able to easily recompute on these shared research objects. In this paper, we present the sciunit, a reusable research object in which aggregated content is recomputable. We describe a Git-like client that efficiently creates, stores, and repeats sciunits. We show through analysis that sciunits repeat computational experiments with minimal storage and processing overhead. Finally, we provide an overview of sharing and reproducible cyberinfrastructure based on sciunits gaining adoption in the domain of geosciences.

Zahra, A., Shah, M. A..  2017.  IoT based ransomware growth rate evaluation and detection using command and control blacklisting. 2017 23rd International Conference on Automation and Computing (ICAC). :1–6.

Internet of things (IoT) is internetworking of various physical devices to provide a range of services and applications. IoT is a rapidly growing field, on an account of this; the security measurements for IoT should be at first concern. In the modern day world, the most emerging cyber-attack threat for IoT is ransomware attack. Ransomware is a kind of malware with the aim of rendering a victim's computer unusable or inaccessible, and then asking the user to pay a ransom to revert the destruction. In this paper we are evaluating ransomware attacks statistics for the past 2 years and the present year to estimate growth rate of the most emerging ransomware families from the last 3 years to evaluate most threatening ransomware attacks for IoT. Growth rate results shows that the number of attacks for Cryptowall and locky ransomware are notably increasing therefore, these ransomware families are potential threat to IoT. Moreover, we present a Cryptowall ransomware attack detection model based on the communication and behavioral study of Cryptowall for IoT environment. The proposed model observes incoming TCP/IP traffic through web proxy server then extracts TCP/IP header and uses command and control (C&C) server black listing to detect ransomware attacks.

Wei, B., Liao, G., Li, W., Gong, Z..  2017.  A Practical One-Time File Encryption Protocol for IoT Devices. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:114–119.

Security and privacy issues of the Internet of Things (IoT in short, hereafter) attracts the hot topic of researches through these years. As the relationship between user and server become more complicated than before, the existing security solutions might not provide exhaustive securities in IoT environment and novel solutions become new research challenges, e.g., the solutions based on symmetric cryptosystems are unsuited to handle with the occasion that decryption is only allowed in specific time range. In this paper, a new scalable one-time file encryption scheme combines reliable cryptographic techniques, which is named OTFEP, is proposed to satisfy specialized security requirements. One of OTFEP's key features is that it offers a mechanism to protect files in the database from arbitrary visiting from system manager or third-party auditors. OTFEP uses two different approaches to deal with relatively small file and stream file. Moreover, OTFEP supports good node scalability and secure key distribution mechanism. Based on its practical security and performance, OTFEP can be considered in specific IoT devices where one-time file encryption is necessary.

Hasan, H., Salah, T., Shehada, D., Zemerly, M. J., Yeun, C. Y., Al-Qutayri, M., Al-Hammadi, Y..  2017.  Secure lightweight ECC-based protocol for multi-agent IoT systems. 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.

The rapid increase of connected devices and the major advances in information and communication technologies have led to great emergence in the Internet of Things (IoT). IoT devices require software adaptation as they are in continuous transition. Multi-agent based solutions offer adaptable composition for IoT systems. Mobile agents can also be used to enable interoperability and global intelligence with smart objects in the Internet of Things. The use of agents carrying personal data and the rapid increasing number of connected IoT devices require the use of security protocols to secure the user data. Elliptic Curve Cryptography (ECC) Algorithm has emerged as an attractive and efficient public-key cryptosystem. We recommend the use of ECC in the proposed Broadcast based Secure Mobile Agent Protocol (BROSMAP) which is one of the most secure protocols that provides confidentiality, authentication, authorization, accountability, integrity and non-repudiation. We provide a methodology to improve BROSMAP to fulfill the needs of Multi-agent based IoT Systems in general. The new BROSMAP performs better than its predecessor and provides the same security requirements. We have formally verified ECC-BROSMAP using Scyther and compared it with BROSMAP in terms of execution time and computational cost. The effect of varying the key size on BROSMAP is also presented. A new ECC-based BROSMAP takes half the time of Rivest-Shamir-Adleman (RSA) 2048 BROSMAP and 4 times better than its equivalent RSA 3072 version. The computational cost was found in favor of ECC-BROSMAP which is more efficient by a factor of 561 as compared to the RSA-BROSMAP.

Zheng, L., Xue, Y., Zhang, L., Zhang, R..  2017.  Mutual Authentication Protocol for RFID Based on ECC. 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). 2:320–323.

In this paper, a mutual authentication protocol based on ECC is designed for RFID systems. This protocol is described in detail and the performance of this protocol is analyzed. The results show that the protocol has many advantages, such as mutual authentication, confidentiality, anonymity, availability, forward security, scalability and so on, which can resist camouflage attacks, tracking attacks, denial of service attacks, system internal attack.

Lee, S. Y., Chung, T. M..  2017.  A study on the fast system recovery: Selecting the number of surrogate nodes for fast recovery in industrial IoT environment. 2017 International Conference on Information and Communications (ICIC). :205–207.

This paper is based on the previous research that selects the proper surrogate nodes for fast recovery mechanism in industrial IoT (Internet of Things) Environment which uses a variety of sensors to collect the data and exchange the collected data in real-time for creating added value. We are going to suggest the way that how to decide the number of surrogate node automatically in different deployed industrial IoT Environment so that minimize the system recovery time when the central server likes IoT gateway is in failure. We are going to use the network simulator to measure the recovery time depending on the number of the selected surrogate nodes according to the sub-devices which are connected to the IoT gateway.

Kollenda, B., Göktaş, E., Blazytko, T., Koppe, P., Gawlik, R., Konoth, R. K., Giuffrida, C., Bos, H., Holz, T..  2017.  Towards Automated Discovery of Crash-Resistant Primitives in Binary Executables. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :189–200.

Many modern defenses rely on address space layout randomization (ASLR) to efficiently hide security-sensitive metadata in the address space. Absent implementation flaws, an attacker can only bypass such defenses by repeatedly probing the address space for mapped (security-sensitive) regions, incurring a noisy application crash on any wrong guess. Recent work shows that modern applications contain idioms that allow the construction of crash-resistant code primitives, allowing an attacker to efficiently probe the address space without causing any visible crash. In this paper, we classify different crash-resistant primitives and show that this problem is much more prominent than previously assumed. More specifically, we show that rather than relying on labor-intensive source code inspection to find a few "hidden" application-specific primitives, an attacker can find such primitives semi-automatically, on many classes of real-world programs, at the binary level. To support our claims, we develop methods to locate such primitives in real-world binaries. We successfully identified 29 new potential primitives and constructed proof-of-concept exploits for four of them.

2017-12-04
Sattar, N. S., Adnan, M. A., Kali, M. B..  2017.  Secured aerial photography using Homomorphic Encryption. 2017 International Conference on Networking, Systems and Security (NSysS). :107–114.

Aerial photography is fast becoming essential in scientific research that requires multi-agent system in several perspective and we proposed a secured system using one of the well-known public key cryptosystem namely NTRU that is somewhat homomorphic in nature. Here we processed images of aerial photography that were captured by multi-agents. The agents encrypt the images and upload those in the cloud server that is untrusted. Cloud computing is a buzzword in modern era and public cloud is being used by people everywhere for its shared, on-demand nature. Cloud Environment faces a lot of security and privacy issues that needs to be solved. This paper focuses on how to use cloud so effectively that there remains no possibility of data or computation breaches from the cloud server itself as it is prone to the attack of treachery in different ways. The cloud server computes on the encrypted data without knowing the contents of the images. After concatenation, encrypted result is delivered to the concerned authority where it is decrypted retaining its originality. We set up our experiment in Amazon EC2 cloud server where several instances were the agents and an instance acted as the server. We varied several parameters so that we could minimize encryption time. After experimentation we produced our desired result within feasible time sustaining the image quality. This work ensures data security in public cloud that was our main concern.

Hwang, T..  2017.  NSF GENI cloud enabled architecture for distributed scientific computing. 2017 IEEE Aerospace Conference. :1–8.

GENI (Global Environment for Network Innovations) is a National Science Foundation (NSF) funded program which provides a virtual laboratory for networking and distributed systems research and education. It is well suited for exploring networks at a scale, thereby promoting innovations in network science, security, services and applications. GENI allows researchers obtain compute resources from locations around the United States, connect compute resources using 100G Internet2 L2 service, install custom software or even custom operating systems on these compute resources, control how network switches in their experiment handle traffic flows, and run their own L3 and above protocols. GENI architecture incorporates cloud federation. With the federation, cloud resources can be federated and/or community of clouds can be formed. The heart of federation is user identity and an ability to “advertise” cloud resources into community including compute, storage, and networking. GENI administrators can carve out what resources are available to the community and hence a portion of GENI resources are reserved for internal consumption. GENI architecture also provides “stitching” of compute and storage resources researchers request. This provides L2 network domain over Internet2's 100G network. And researchers can run their Software Defined Networking (SDN) controllers on the provisioned L2 network domain for a complete control of networking traffic. This capability is useful for large science data transfer (bypassing security devices for high throughput). Renaissance Computing Institute (RENCI), a research institute in the state of North Carolina, has developed ORCA (Open Resource Control Architecture), a GENI control framework. ORCA is a distributed resource orchestration system to serve science experiments. ORCA provides compute resources as virtual machines and as well as baremetals. ORCA based GENI ra- k was designed to serve both High Throughput Computing (HTC) and High Performance Computing (HPC) type of computes. Although, GENI is primarily used in various universities and research entities today, GENI architecture can be leveraged in the commercial, aerospace and government settings. This paper will go over the architecture of GENI and discuss the GENI architecture for scientific computing experiments.

Alejandre, F. V., Cortés, N. C., Anaya, E. A..  2017.  Feature selection to detect botnets using machine learning algorithms. 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP). :1–7.

In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained.

2017-11-20
Wei, Li, Hongyu, Liu, Xiaoliang, Zhang.  2016.  A network data security analysis method based on DPI technology. 2016 7th IEEE International Conference on Software Engineering and Service Science (ICSESS). :973–976.

In view of the high demand for the security of visiting data in power system, a network data security analysis method based on DPI technology was put forward in this paper, to solve the problem of security gateway judge the legality of the network data. Considering the legitimacy of the data involves data protocol and data contents, this article will filters the data from protocol matching and content detection. Using deep packet inspection (DPI) technology to screen the protocol. Using protocol analysis to detect the contents of data. This paper implements the function that allowing secure data through the gateway and blocking threat data. The example proves that the method is more effective guarantee the safety of visiting data.

Mallikarjunan, K. N., Muthupriya, K., Shalinie, S. M..  2016.  A survey of distributed denial of service attack. 2016 10th International Conference on Intelligent Systems and Control (ISCO). :1–6.

Information security deals with a large number of subjects like spoofed message detection, audio processing, video surveillance and cyber-attack detections. However the biggest threat for the homeland security is cyber-attacks. Distributed Denial of Service attack is one among them. Interconnected systems such as database server, web server, cloud computing servers etc., are now under threads from network attackers. Denial of service is common attack in the internet which causes problem for both the user and the service providers. Distributed attack sources can be used to enlarge the attack in case of Distributed Denial of Service so that the effect of the attack will be high. Distributed Denial of Service attacks aims at exhausting the communication and computational power of the network by flooding the packets through the network and making malicious traffic in the network. In order to be an effective service the DDoS attack must be detected and mitigated quickly before the legitimate user access the attacker's target. The group of systems that is used to perform the DoS attack is known as the botnets. This paper introduces the overview of the state of art in DDoS attack detection strategies.

2017-11-13
Walsh, K..  2016.  TLS with trustworthy certificate authorities. 2016 IEEE Conference on Communications and Network Security (CNS). :516–524.

Cloud platforms can leverage Trusted Platform Modules to help provide assurance to clients that cloud-based Web services are trustworthy and behave as expected. We discuss a variety of approaches to providing this assurance, and we implement one approach based on the concept of a trustworthy certificate authority. TaoCA, our prototype implementation, links cryptographic attestations from a cloud platform, including a Trusted Platform Module, with existing TLS-based authentication mechanisms. TaoCA is designed to enable certificate authorities, browser vendors, system administrators, and end users to define and enforce a range of trust policies for web services. Evaluation of the prototype implementation demonstrates the feasibility of the design, illustrates performance tradeoffs, and serves as an end-to-end, proof-of-concept evaluation of underlying trustworthy computing abstractions. The proposed approach can be deployed incrementally and provides new benefits while retaining compatibility with the existing public key infrastructure used for TLS. 

Yu, F., Chen, L., Zhang, H..  2016.  Virtual TPM Dynamic Trust Extension Suitable for Frequent Migrations. 2016 IEEE Trustcom/BigDataSE/ISPA. :57–65.

This paper has presented an approach of vTPM (virtual Trusted Platform Module) Dynamic Trust Extension (DTE) to satisfy the requirements of frequent migrations. With DTE, vTPM is a delegation of the capability of signing attestation data from the underlying pTPM (physical TPM), with one valid time token issued by an Authentication Server (AS). DTE maintains a strong association between vTPM and its underlying pTPM, and has clear distinguishability between vTPM and pTPM because of the different security strength of the two types of TPM. In DTE, there is no need for vTPM to re-acquire Identity Key (IK) certificate(s) after migration, and pTPM can have a trust revocation in real time. Furthermore, DTE can provide forward security. Seen from the performance measurements of its prototype, DTE is feasible.

2017-11-03
Swathy, V., Sudha, K., Aruna, R., Sangeetha, C., Janani, R..  2016.  Providing advanced security mechanism for scalable data sharing in cloud storage. 2016 International Conference on Inventive Computation Technologies (ICICT). 3:1–6.

Data sharing is a significant functionality in cloud storage. These cloud storage provider are answerable for keeping the data obtainable and available in addition to the physical environment protected and running. Here we can securely, efficiently, and flexibly share data with others in cloud storage. A new public-key cryptosystems is planned which create constant-size cipher texts such that efficient allocation of decryption rights for any set of cipher texts are achievable. The uniqueness means that one can aggregate any set of secret keys and make them as packed in as a single key, but encircling the power of all the keys being aggregated. This packed in aggregate key can be easily sent to others or be stored in a smart card with very restricted secure storage. In KAC, users encrypt a file with single key, that means every file have each file, also there will be aggregate keys for two or more files, which formed by using the tree structure. Through this, the user can share more files with a single key at a time.