Visible to the public Biblio

Filters: Keyword is SSA  [Clear All Filters]
2018-02-21
Zhou, G., Feng, Y., Bo, R., Chien, L., Zhang, X., Lang, Y., Jia, Y., Chen, Z..  2017.  GPU-Accelerated Batch-ACPF Solution for N-1 Static Security Analysis. IEEE Transactions on Smart Grid. 8:1406–1416.

Graphics processing unit (GPU) has been applied successfully in many scientific computing realms due to its superior performances on float-pointing calculation and memory bandwidth, and has great potential in power system applications. The N-1 static security analysis (SSA) appears to be a candidate application in which massive alternating current power flow (ACPF) problems need to be solved. However, when applying existing GPU-accelerated algorithms to solve N-1 SSA problem, the degree of parallelism is limited because existing researches have been devoted to accelerating the solution of a single ACPF. This paper therefore proposes a GPU-accelerated solution that creates an additional layer of parallelism among batch ACPFs and consequently achieves a much higher level of overall parallelism. First, this paper establishes two basic principles for determining well-designed GPU algorithms, through which the limitation of GPU-accelerated sequential-ACPF solution is demonstrated. Next, being the first of its kind, this paper proposes a novel GPU-accelerated batch-QR solver, which packages massive number of QR tasks to formulate a new larger-scale problem and then achieves higher level of parallelism and better coalesced memory accesses. To further improve the efficiency of solving SSA, a GPU-accelerated batch-Jacobian-Matrix generating and contingency screening is developed and carefully optimized. Lastly, the complete process of the proposed GPU-accelerated batch-ACPF solution for SSA is presented. Case studies on an 8503-bus system show dramatic computation time reduction is achieved compared with all reported existing GPU-accelerated methods. In comparison to UMFPACK-library-based single-CPU counterpart using Intel Xeon E5-2620, the proposed GPU-accelerated SSA framework using NVIDIA K20C achieves up to 57.6 times speedup. It can even achieve four times speedup when compared to one of the fastest multi-core CPU parallel computing solution using KLU library. The prop- sed batch-solving method is practically very promising and lays a critical foundation for many other power system applications that need to deal with massive subtasks, such as Monte-Carlo simulation and probabilistic power flow.

2017-09-15
Rodrigues, Bruno, Quintão Pereira, Fernando Magno, Aranha, Diego F..  2016.  Sparse Representation of Implicit Flows with Applications to Side-channel Detection. Proceedings of the 25th International Conference on Compiler Construction. :110–120.

Information flow analyses traditionally use the Program Dependence Graph (PDG) as a supporting data-structure. This graph relies on Ferrante et al.'s notion of control dependences to represent implicit flows of information. A limitation of this approach is that it may create O(textbarItextbar x textbarEtextbar) implicit flow edges in the PDG, where I are the instructions in a program, and E are the edges in its control flow graph. This paper shows that it is possible to compute information flow analyses using a different notion of implicit dependence, which yields a number of edges linear on the number of definitions plus uses of variables. Our algorithm computes these dependences in a single traversal of the program's dominance tree. This efficiency is possible due to a key property of programs in Static Single Assignment form: the definition of a variable dominates all its uses. Our algorithm correctly implements Hunt and Sands system of security types. Contrary to their original formulation, which required O(IxI) space and time for structured programs, we require only O(I). We have used our ideas to build FlowTracker, a tool that uncovers side-channel vulnerabilities in cryptographic algorithms. FlowTracker handles programs with over one-million assembly instructions in less than 200 seconds, and creates 24% less implicit flow edges than Ferrante et al.'s technique. FlowTracker has detected an issue in a constant-time implementation of Elliptic Curve Cryptography; it has found several time-variant constructions in OpenSSL, one issue in TrueCrypt and it has validated the isochronous behavior of the NaCl library.