Biblio
Filters: Keyword is False Data Detection [Clear All Filters]
A Bagging MLP-based Autoencoder for Detection of False Data Injection Attack in Smart Grid. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
.
2022. The accelerated move toward adopting the Smart Grid paradigm has resulted in numerous drawbacks as far as security is concerned. Traditional power grids are becoming more vulnerable to cyberattacks as all the control decisions are generated based on the data the Smart Grid generates during its operation. This data can be tampered with or attacked in communication lines to mislead the control room in decision-making. The false data injection attack (FDIA) is one of the most severe cyberattacks on today’s cyber-physical power system, as it has the potential to cause significant physical and financial damage. However, detecting cyberattacks are incredibly challenging since they have no known patterns. In this paper, we launch a random FDIA on IEEE-39 bus system. Later, we propose a Bagging MLP-based autoencoder to detect the FDIAs in the power system and compare the result with a single ML model. The Bagging MLP-based autoencoder outperforms the Isolation forest while detecting FDIAs.
A New False Data Injection Detection Protocol based Machine Learning for P2P Energy Transaction between CEVs. 2022 IEEE International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM). 4:1—5.
.
2022. Without security, any network system loses its efficiency, reliability, and resilience. With the huge integration of the ICT capabilities, the Electric Vehicle (EV) as a transportation form in cities is becoming more and more affordable and able to reply to citizen and environmental expectations. However, the EV vulnerability to cyber-attacks is increasing which intensifies its negative impact on societies. This paper targets the cybersecurity issues for Connected Electric Vehicles (CEVs) in parking lots where a peer-to-peer(P2P) energy transaction system is launched. A False Data Injection Attack (FDIA) on the electricity price signal is considered and a Machine Learning/SVM classification protocol is used to detect and extract the right values. Simulation results are conducted to prove the effectiveness of this proposed model.
Analysis Of The Small UAV Trajectory Detection Algorithm Based On The “l/n-d” Criterion Using Kalman Filtering Due To FMCW Radar Data. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :741—745.
.
2022. Promising means of detecting small UAVs are FMCW radar systems. Small UAVs with an RCS value of the order of 10−3••• 10−1m2 are characterized by a low SNR (less than 10 dB). To ensure an acceptable probability of detection in the resolution element (more than 0.9), it becomes necessary to reduce the detection threshold. However, this leads to a significant increase in the probability of false alarms (more than 10−3) and is accompanied by the appearance of a large number of false plots. The work describes an algorithm for trajectory detecting of a small UAV based on a “l/n-d” criterion using Kalman filtering in a spherical coordinate system due to FMCW radar data. Statistical analysis of algorithms based on two types of criteria “3/5-2” and “5/9-2” is performed. It is shown that the algorithms allow to achieve the probability of target trajectory detection greater than 0.9 and low probability of false detection of the target trajectory less than 10−4 with the false alarm probability in the resolution element 10−3••• 10−2•
MHSnet: Multi-head and Spatial Attention Network with False-Positive Reduction for Lung Nodule Detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). :1108—1114.
.
2022. Mortality from lung cancer has ranked high among cancers for many years. Early detection of lung cancer is critical for disease prevention, cure, and mortality rate reduction. Many existing detection methods on lung nodules can achieve high sensitivity but meanwhile introduce an excessive number of false-positive proposals, which is clinically unpractical. In this paper, we propose the multi-head detection and spatial attention network, shortly MHSnet, to address this crucial false-positive issue. Specifically, we first introduce multi-head detectors and skip connections to capture multi-scale features so as to customize for the variety of nodules in sizes, shapes, and types. Then, inspired by how experienced clinicians screen CT images, we implemented a spatial attention module to enable the network to focus on different regions, which can successfully distinguish nodules from noisy tissues. Finally, we designed a lightweight but effective false-positive reduction module to cut down the number of false-positive proposals, without any constraints on the front network. Compared with the state-of-the-art models, our extensive experimental results show the superiority of this MHSnet not only in the average FROC but also in the false discovery rate (2.64% improvement for the average FROC, 6.39% decrease for the false discovery rate). The false-positive reduction module takes a further step to decrease the false discovery rate by 14.29%, indicating its very promising utility of reducing distracted proposals for the downstream tasks relied on detection results.
Adaptive control of bilateral teleoperation systems with false data injection attacks and attacks detection. 2022 41st Chinese Control Conference (CCC). :4407—4412.
.
2022. This paper studies adaptive control of bilateral teleoperation systems with false data injection attacks. The model of bilateral teleoperation system with false data injection attacks is presented. An off-line identification approach based on the least squares is used to detect whether false data injection attacks occur or not in the communication channel. Two Bernoulli distributed variables are introduced to describe the packet dropouts and false data injection attacks in the network. An adaptive controller is proposed to deal stability of the system with false data injection attacks. Some sufficient conditions are proposed to ensure the globally asymptotical stability of the system under false data injection attacks by using Lyapunov functional methods. A bilateral teleoperation system with two degrees of freedom is used to show the effectiveness of gained results.
Anomaly Detection of Power Big Data Based on Improved Support Vector Machine. 2022 4th International Academic Exchange Conference on Science and Technology Innovation (IAECST). :102—105.
.
2022. To reduce the false negative rate in power data anomaly detection, enhance the overall detection accuracy and reliability, and create a more stable data detection environment, this paper designs a power big data anomaly detection method based on improved support vector machine technology. The abnormal features are extracted in advance, combined with the changes of power data, the multi-target anomaly detection nodes are laid, and on this basis, the improved support vector machine anomaly detection model is constructed. The anomaly detection is realized by combining the normalization processing of the equivalent vector. The final test results show that compared with the traditional clustering algorithm big data anomaly detection test group and the traditional multi-domain feature extraction big data anomaly detection test group, the final false negative rate of the improved support vector machine big data exception detection test group designed in this paper is only 2.04, which shows that the effect of the anomaly detection method is better. It is more accurate and reliable for testing in a complex power environment and has practical application value.
Constant False Alarm Rate Frame Detection Strategy for Terrestrial ASM/VDE Signals Received by Satellite. 2022 IEEE 5th International Conference on Electronics and Communication Engineering (ICECE). :29—33.
.
2022. Frame detection is an important part of the reconnaissance satellite receiver to identify the terrestrial application specific messages (ASM) / VHF data exchange (VDE) signal, and has been challenged by Doppler shift and message collision. A constant false alarm rate (CFAR) frame detection strategy insensitive to Doppler shift has been proposed in this paper. Based on the double Barker sequence, a periodical sequence has been constructed, and differential operations have been adopted to eliminate the Doppler shift. Moreover, amplitude normalization is helpful for suppressing the interference introduced by message collision. Simulations prove that the proposed CFAR frame detection strategy is very attractive for the reconnaissance satellite to identify the terrestrial ASM/VDE signal.
Detection of Bad Data and False Data Injection Based on Back-Propagation Neural Network. 2022 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia). :101—105.
.
2022. Power system state estimation is an essential tool for monitoring the operating conditions of the grid. However, the collected measurements may not always be reliable due to bad data from various faults as well as the increasing potential of being exposed to cyber-attacks, particularly from data injection attacks. To enhance the accuracy of state estimation, this paper presents a back-propagation neural network to detect and identify bad data and false data injections. A variety of training data exhibiting different statistical properties were used for training. The developed strategy was tested on the IEEE 30-bus and 118-bus power systems using MATLAB. Simulation results revealed the feasibility of the method for the detection and differentiation of bad data and false data injections in various operating scenarios.
Deep Neural Network Based Efficient Data Fusion Model for False Data Detection in Power System. 2022 IEEE 6th Conference on Energy Internet and Energy System Integration (EI2). :1462—1466.
.
2022. Cyberattack on power system brings new challenges on the development of modern power system. Hackers may implement false data injection attack (FDIA) to cause unstable operating conditions of the power system. However, data from different power internet of things usually contains a lot of redundancy, making it difficult for current efficient discriminant model to precisely identify FDIA. To address this problem, we propose a deep learning network-based data fusion model to handle features from measurement data in power system. Proposed model includes a data enrichment module and a data fusion module. We firstly employ feature engineering technique to enrich features from power system operation in time dimension. Subsequently, a long short-term memory based autoencoder (LSTM-AE) is designed to efficiently avoid feature space explosion problem during data enriching process. Extensive experiments are performed on several classical attack detection models over the load data set from IEEE 14-bus system and simulation results demonstrate that fused data from proposed model shows higher detection accuracy with respect to the raw data.
Detection of False Data Injection Attacks in Unobservable Power Systems by Laplacian Regularization. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM). :415—419.
.
2022. The modern electrical grid is a complex cyber-physical system, and thus is vulnerable to measurement losses and attacks. In this paper, we consider the problem of detecting false data injection (FDI) attacks and bad data in unobservable power systems. Classical bad-data detection methods usually assume observable systems and cannot detect stealth FDI attacks. We use the smoothness property of the system states (voltages) w.r.t. the admittance matrix, which is also the Laplacian of the graph representation of the grid. First, we present the Laplacian-based regularized state estimator, which does not require full observability of the network. Then, we derive the Laplacian-regularized generalized likelihood ratio test (LR-GLRT). We show that the LR-GLRT has a component of a soft high-pass graph filter applied to the state estimator. Numerical results on the IEEE 118-bus system demonstrate that the LR-GLRT outperforms other detection approaches and is robust to missing data.
Detection of False Data Injection Attacks in smart grids based on cubature Kalman Filtering. 2021 33rd Chinese Control and Decision Conference (CCDC). :2526—2532.
.
2021. The false data injection attacks (FDIAs) in smart grids can offset the power measurement data and it can bypass the traditional bad data detection mechanism. To solve this problem, a new detection mechanism called cosine similarity ratio which is based on the dynamic estimation algorithm of square root cubature Kalman filter (SRCKF) is proposed in this paper. That is, the detection basis is the change of the cosine similarity between the actual measurement and the predictive measurement before and after the attack. When the system is suddenly attacked, the actual measurement will have an abrupt change. However, the predictive measurement will not vary promptly with it owing to the delay of Kalman filter estimation. Consequently, the cosine similarity between the two at this moment has undergone a change. This causes the ratio of the cosine similarity at this moment and that at the initial moment to fluctuate considerably compared to safe operation. If the detection threshold is triggered, the system will be judged to be under attack. Finally, the standard IEEE-14bus test system is used for simulation experiments to verify the effectiveness of the proposed detection method.
A Novel Real-Time False Data Detection Strategy for Smart Grid. 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). :1—6.
.
2021. State estimation algorithm ensures an effective realtime monitoring of the modern smart grid leading to an accurate determination of the current operating states. Recently, a new genre of data integrity attacks namely false data injection attack (FDIA) has shown its deleterious effects by bypassing the traditional bad data detection technique. Modern grid operators must detect the presence of such attacks in the raw field measurements to guarantee a safe and reliable operation of the grid. State forecasting based FDIA identification schemes have recently shown its efficacy by determining the deviation of the estimated states due to an attack. This work emphasizes on a scalable deep learning state forecasting model which can accurately determine the presence of FDIA in real-time. An optimal set of hyper-parameters of the proposed architecture leads to an effective forecasting of the operating states with minimal error. A diligent comparison between other state of the art forecasting strategies have promoted the effectiveness of the proposed neural network. A comprehensive analysis on the IEEE 14 bus test bench effectively promotes the proposed real-time attack identification strategy.
Quickest Detection of Stochastic False Data Injection Attacks with Unknown Parameters. 2021 IEEE Statistical Signal Processing Workshop (SSP). :426—430.
.
2021. This paper considers a multivariate quickest detection problem with false data injection (FDI) attacks in internet of things (IoT) systems. We derive a sequential generalized likelihood ratio test (GLRT) for zero-mean Gaussian FDI attacks. Exploiting the fact that covariance matrices are positive, we propose strategies to detect positive semi-definite matrix additions rather than arbitrary changes in the covariance matrix. The distribution of the GLRT is only known asymptotically whereas quickest detectors deal with short sequences, thereby leading to loss of performance. Therefore, we use a finite-sample correction to reduce the false alarm rate. Further, we provide a numerical approach to estimate the threshold sequences, which are analytically intractable to compute. We also compare the average detection delay of the proposed detector for constant and varying threshold sequences. Simulations showed that the proposed detector outperforms the standard sequential GLRT detector.
A Data Driven Threat-Maximizing False Data Injection Attack Detection Method with Spatio-Temporal Correlation. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :318—325.
.
2021. As a typical cyber-physical system, the power system utilizes advanced information and communication technologies to transmit crucial control signals in communication channels. However, many adversaries can construct false data injection attacks (FDIA) to circumvent traditional bad data detection and break the stability of the power grid. In this paper, we proposed a threat-maximizing FDIA model from the view of attackers. The proposed FDIA can not only circumvent bad data detection but can also cause a terrible fluctuation in the power system. Furthermore, in order to eliminate potential attack threats, the Spatio-temporal correlations of measurement matrices are considered. To extract the Spatio-temporal features, a data-driven detection method using a deep convolutional neural network was proposed. The effectiveness of the proposed FDIA model and detection are assessed by a simulation on the New England 39 bus system. The results show that the FDIA can cause a negative effect on the power system’s stable operation. Besides, the results reveal that the proposed FDIA detection method has an outstanding performance on Spatio-temporal features extraction and FDIA recognition.
False Data Detection in Power System Under State Variables' Cyber Attacks Using Information Theory. 2021 IEEE Power and Energy Conference at Illinois (PECI). :1—8.
.
2021. State estimation (SE) plays a vital role in the reliable operation of modern power systems, gives situational awareness to the operators, and is employed in different functions of the Energy Management System (EMS), such as Optimal Power Flow (OPF), Contingency Analysis (CA), power market mechanism, etc. To increase SE's accuracy and protect it from compromised measurements, Bad Data Detection (BDD) algorithm is employed. However, the integration of Information and Communication Technologies (ICT) into the modern power system makes it a complicated cyber-physical system (CPS). It gives this opportunity to an adversary to find some loopholes and flaws, penetrate to CPS layer, inject false data, bypass existing BDD schemes, and consequently, result in security and stability issues. This paper employs a semi-supervised learning method to find normal data patterns and address the False Data Injection Attack (FDIA) problem. Based on this idea, the Probability Distribution Functions (PDFs) of measurement variations are derived for training and test data sets. Two distinct indices, i.e., Absolute Distance (AD) and Relative Entropy (RE), a concept in Information Theory, are utilized to find the distance between these two PDFs. In case an intruder compromises data, the related PDF changes. However, we demonstrate that AD fails to detect these changes. On the contrary, the RE index changes significantly and can properly detect FDIA. This proposed method can be used in a real-time attack detection process where the larger RE index indicates the possibility of an attack on the real-time data. To investigate the proposed methodology's effectiveness, we utilize the New York Independent System Operator (NYISO) data (Jan.-Dec. 2019) with a 5-minute resolution and map it to the IEEE 14-bus test system, and prepare an appropriate data set. After that, two different case studies (attacks on voltage magnitude ( Vm), and phase angle (θ)) with different attack parameters (i.e., 0.90, 0.95, 0.98, 1.02, 1.05, and 1.10) are defined to assess the impact of an attack on the state variables at different buses. The results show that RE index is a robust and reliable index, appropriate for real-time applications, and can detect FDIA in most of the defined case studies.
Semi-Supervised False Data Detection Using Gated Recurrent Units and Threshold Scoring Algorithm. 2021 IEEE Power & Energy Society General Meeting (PESGM). :01—05.
.
2021. In recent years, cyber attackers are targeting the power system and imposing different damages to the national economy and public safety. False Data Injection Attack (FDIA) is one of the main types of Cyber-Physical attacks that adversaries can manipulate power system measurements and modify system data. Consequently, it may result in incorrect decision-making and control operations and lead to devastating effects. In this paper, we propose a two-stage detection method. In the first step, Gated Recurrent Unit (GRU), as a deep learning algorithm, is employed to forecast the data for the future horizon. Meanwhile, hyperparameter optimization is implemented to find the optimum parameters (i.e., number of layers, epoch, batch size, β1, β2, etc.) in the supervised learning process. In the second step, an unsupervised scoring algorithm is employed to find the sequences of false data. Furthermore, two penalty factors are defined to prevent the objective function from greedy behavior. We assess the capability of the proposed false data detection method through simulation studies on a real-world data set (ComEd. dataset, Northern Illinois, USA). The results demonstrate that the proposed method can detect different types of attacks, i.e., scaling, simple ramp, professional ramp, and random attacks, with good performance metrics (i.e., recall, precision, F1 Score). Furthermore, the proposed deep learning method can mitigate false data with the estimated true values.
On Detection of False Data Injection Attacks in Distributed State Estimation of Power Networks. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :472—473.
.
2021. In power networks, it is important to detect a cyber attack. In this paper, we propose a detection method of false data injection (FDI) attacks. FDI attacks cannot be detected from the estimation error in power networks. The proposed method is based on the distributed state estimation, and is used the tentative estimated state. The proposed method is demonstrated by a numerical example on the IEEE 14-bus system.
Sensor Scheduling-Based Detection of False Data Injection Attacks in Power System State Estimation. 2021 IEEE International Conference on Consumer Electronics (ICCE). :1—4.
.
2021. In state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection attack. In this paper, to enforce security of power networks, we propose a method of detecting a false data injection attack. In the proposed method, a false data injection attack is detected by randomly choosing sensors used in state estimation. The effectiveness of the proposed method is presented by two numerical examples including the IEEE 14-bus system.
An Object Detection Model Robust to Out-of-Distribution Data. 2021 IEEE International Conference on Big Data and Smart Computing (BigComp). :275—278.
.
2021. Most of the studies of the existing object detection models are studies to better detect the objects to be detected. The problem of false detection of objects that should not be detected is not considered. When an object detection model that does not take this problem into account is applied to an industrial field close to humans, false detection can lead to a dangerous situation that greatly interferes with human life. To solve this false detection problem, this paper proposes a method of fine-tuning the backbone neural network model of the object detection model using the Outlier Exposure method and applying the class-specific uncertainty constant to the confidence score to detect the object.
False Data Injection Impact Analysis In AI-Based Smart Grid. SoutheastCon 2021. :01—07.
.
2021. As the traditional grids are transitioning to the smart grid, they are getting more prone to cyber-attacks. Among all the cyber-attack one of the most dangerous attack is false data injection attack. When this attack is performed with historical information of the data packet the attack goes undetected. As the false data is included for training and testing the model, the accuracy is decreased, and decision making is affected. In this paper we analyzed the impact of the false data injection attack(FDIA) on AI based smart grid. These analyses were performed using two different multi-layer perceptron architectures with one of the independent variables being compared and modified by the attacker. The root-mean squared values were compared with different models.
Real-time False Data Injection Attack Detection in Connected Vehicle Systems with PDE modeling. 2020 American Control Conference (ACC). :3267—3272.
.
2020. Connected vehicles as a promising concept of Intelligent Transportation System (ITS), are a potential solution to address some of the existing challenges of emission, traffic congestion as well as fuel consumption. To achieve these goals, connectivity among vehicles through the wireless communication network is essential. However, vehicular communication networks endure from reliability and security issues. Cyber-attacks with purposes of disrupting the performance of the connected vehicles, lead to catastrophic collision and traffic congestion. In this study, we consider a platoon of connected vehicles equipped with Cooperative Adaptive Cruise Control (CACC) which are subjected to a specific type of cyber-attack namely "False Data Injection" attack. We developed a novel method to model the attack with ghost vehicles injected into the connected vehicles network to disrupt the performance of the whole system. To aid the analysis, we use a Partial Differential Equation (PDE) model. Furthermore, we present a PDE model-based diagnostics scheme capable of detecting the false data injection attack and isolating the injection point of the attack in the platoon system. The proposed scheme is designed based on a PDE observer with measured velocity and acceleration feedback. Lyapunov stability theory has been utilized to verify the analytically convergence of the observer under no attack scenario. Eventually, the effectiveness of the proposed algorithm is evaluated with simulation study.
A Target Detection Method in SAR Images Based on Superpixel Segmentation. 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). :528—530.
.
2020. A synthetic aperture radar (SAR) target detection method based on the fusion of multiscale superpixel segmentations is proposed in this paper. SAR images are segmented between land and sea firstly by using superpixel technology in different scales. Secondly, image segmentation results together with the constant false alarm rate (CFAR) detection result are coalesced. Finally, target detection is realized by fusing different scale results. The effectiveness of the proposed algorithm is tested on Sentinel-1A data.
Training Strategies for Autoencoder-based Detection of False Data Injection Attacks. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
.
2020. The security of energy supply in a power grid critically depends on the ability to accurately estimate the state of the system. However, manipulated power flow measurements can potentially hide overloads and bypass the bad data detection scheme to interfere the validity of estimated states. In this paper, we use an autoencoder neural network to detect anomalous system states and investigate the impact of hyperparameters on the detection performance for false data injection attacks that target power flows. Experimental results on the IEEE 118 bus system indicate that the proposed mechanism has the ability to achieve satisfactory learning efficiency and detection accuracy.
A Model-Based Approach to Anomaly Detection Trading Detection Time and False Alarm Rate. 2020 Mediterranean Communication and Computer Networking Conference (MedComNet). :1—8.
.
2020. The complexity and ubiquity of modern computing systems is a fertile ground for anomalies, including security and privacy breaches. In this paper, we propose a new methodology that addresses the practical challenges to implement anomaly detection approaches. Specifically, it is challenging to define normal behavior comprehensively and to acquire data on anomalies in diverse cloud environments. To tackle those challenges, we focus on anomaly detection approaches based on system performance signatures. In particular, performance signatures have the potential of detecting zero-day attacks, as those approaches are based on detecting performance deviations and do not require detailed knowledge of attack history. The proposed methodology leverages an analytical performance model and experimentation, and allows to control the rate of false positives in a principled manner. The methodology is evaluated using the TPCx-V workload, which was profiled during a set of executions using resource exhaustion anomalies that emulate the effects of anomalies affecting system performance. The proposed approach was able to successfully detect the anomalies, with a low number of false positives (precision 90%-98%).
Detection of False Data Injection Attacks Using the Autoencoder Approach. 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). :1—6.
.
2020. State estimation is of considerable significance for the power system operation and control. However, well-designed false data injection attacks can utilize blind spots in conventional residual-based bad data detection methods to manipulate measurements in a coordinated manner and thus affect the secure operation and economic dispatch of grids. In this paper, we propose a detection approach based on an autoencoder neural network. By training the network on the dependencies intrinsic in `normal' operation data, it effectively overcomes the challenge of unbalanced training data that is inherent in power system attack detection. To evaluate the detection performance of the proposed mechanism, we conduct a series of experiments on the IEEE 118-bus power system. The experiments demonstrate that the proposed autoencoder detector displays robust detection performance under a variety of attack scenarios.