Biblio
The primary objective of Cognitive Radio Networks (CRN) is to opportunistically utilize the available spectrum for efficient and seamless communication. Like all other radio networks, Cognitive Radio Network also suffers from a number of security attacks and Primary User Emulation Attack (PUEA) is vital among them. Primary user Emulation Attack not only degrades the performance of the Cognitive Radio Networks but also dissolve the objective of Cognitive Radio Network. Efficient and secure authentication of Primary Users (PU) is an only solution to mitigate Primary User Emulation Attack but most of the mechanisms designed for this are either complex or make changes to the spectrum. Here, we proposed a mechanism to authenticate Primary Users in Cognitive Radio Network which is neither complex nor make any changes to spectrum. The proposed mechanism is secure and also has improved the performance of the Cognitive Radio Network substantially.
Primary user emulation (PUE) attack causes security issues in a cognitive radio network (CRN) while sensing the unused spectrum. In PUE attack, malicious users transmit an emulated primary signal in spectrum sensing interval to secondary users (SUs) to forestall them from accessing the primary user (PU) spectrum bands. In the present paper, the defense against such attack by Neyman-Pearson criterion is shown in terms of total error probability. Impact of several parameters such as attacker strength, attacker's presence probability, and signal-to-noise ratio on SU is shown. Result shows proposed method protect the harmful effects of PUE attack in spectrum sensing.
Heterogeneous cognitive wireless networks (HeCoNets)) are consisted of macrocells that are overlaid by small cells (e.g, femtocells, picocells). These small cells operate over the cognitive radio paradigm. In this paper, we consider a cooperative model in the uplink of HetCoNets, that includes picocell and famtocells networks that are using unlicensed channels from the macrocesll network. In our cooperative model, cognitive picocell users' equipments (CPUEs) and cognitive femtocell users (CFUEs) get incentives from cooperating with each other to improve the unlicensed channels usage and mitigate inter-tier and intra-tier interference while maximizing sum-rate of users in the HetCoNet. We apply a coalition game approach in which CPUEs and CFUEs are considered as players of the game. We have intensively simulated the proposed idea in matlab. Our simulation results show the effectiveness of our proposed compared with non-cooperative model.