Visible to the public Biblio

Filters: Keyword is underwater communication  [Clear All Filters]
2022-10-20
Manikandan, T.T., Sukumaran, Rajeev, Christhuraj, M.R., Saravanan, M..  2020.  Adopting Stochastic Network Calculus as Mathematical Theory for Performance Analysis of Underwater Wireless Communication Networks. 2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC). :436—441.
Underwater Wireless Communication Network (UWCN) is highly emerging in recent times due to the broad variety of underwater applications ranging from disaster prediction, environmental resource monitoring, military security surveillance and assisted navigation. Since the kind of accuracy these applications demands from the dynamic underwater environment is really high, so there is a need for effective way of study underwater communication networks. Usually underwater networks can be studied with the help of actual underwater testbed or with the model of the underwater network. Studying the underwater system with the actual underwater testbed is costly. The effective way of analysis can be done by creating a mathematical model of underwater systems. Queuing theory is one of the most popular mathematical theories used for conventional circuit switched networks whereas it can’t be applied for modeling modern packet switched networks which has high variability compared to that of circuit switched networks. So this paper presents Stochastic Network Calculus (SNC) as the mathematical theory for modeling underwater communication networks. Underlying principles and basic models provided by SNC for analyzing the performance graduates of UWCN is discussed in detail for the benefit of researchers looking for the effective mathematical theory for modeling the system in the domain of underwater communication.
2022-05-06
Kalyani, Muppalla, Park, Soo-Hyun.  2021.  Ontology based routing path selection mechanism for underwater Internet of Things. 2021 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). :1—5.
Based on the success of terrestrial Internet of Things (IoT), research has started on Underwater IoT (UIoT). The UIoT describes global network of connected underwater things that interact with water environment and communicate with terrestrial network through the underwater communication technologies. For UIoT device, it is important to choose the channel before transmission. This paper deals with UIoT communication technologies and ontology based path selection mechanism for UIoT.
Gai, Lei, Li, Wendong, Wei, Yu, Yu, Yonghe, Yang, Yang, Zhang, Xinjian, Zhu, Qiming, Wang, Guoyu, Gu, Yongjian.  2021.  Secure underwater optical communications based on quantum technologies. 2021 19th International Conference on Optical Communications and Networks (ICOCN). :1—3.
Underwater wireless optical communications are studied through single photon detection, photon states modulation and quantum key encryption. These studies will promote the development of optical communication applications in underwater vehicles and underwater sensor networks.
Diamant, Roee, Casari, Paolo, Tomasin, Stefano.  2021.  Topology-based Secret Key Generation for Underwater Acoustic Networks. 2021 Fifth Underwater Communications and Networking Conference (UComms). :1—5.
We propose a method to let a source and a destination agree on a key that remains secret to a potential eavesdropper in an underwater acoustic network (UWAN). We generate the key from the propagation delay measured over a set of multihop routes: this harvests the randomness in the UWAN topology and turns the slow sound propagation in the water into an advantage for the key agreement protocol. Our scheme relies on a route discovery handshake. During this process, all intermediate relays accumulate message processing delays, so that both the source and the destination can compute the actual propagation delays along each route, and map this information to a string of bits. Finally, via a secret key agreement from the information-theoretic security framework, we obtain an equal set of bits at the source and destination, which is provably secret to a potential eavesdropper located away from both nodes. Our simulation results show that, even for small UWANs of 4 nodes, we obtain 11 secret bits per explored topology, and that the protocol is insensitive to an average node speed of up to 0.5 m/s.
Hariyale, Ashish, Thawre, Aakriti, Chandavarkar, B. R..  2021.  Mitigating unsecured data forwarding related attack of underwater sensor network. 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). :1—5.
To improve communication underwater, the underwater sensor networks (UWSN) provide gains for many different underwater applications, like Underwater Data-centers, Aquatic Monitoring, Tsunami Monitoring Systems, Aquatic Monitoring, Underwater Oil Field Discovery, Submarine Target Localization, Surveilling Water Territory of the Country via UWSN, Submarine Target Localization and many more. underwater applications are dependent on secure data communication in an underwater environment, so Data transmission in Underwater Sensor Network is a need of the future. Underwater data transmission itself is a big challenge due to various limitations of underwater communication mediums like lower bandwidth, multipath effect, path loss, propagation delay, noise, Doppler spread, and so on. These challenges make the underwater networks one of the most vulnerable networks for many different security attacks like sinkhole, spoofing, wormhole, misdirection, etc. It causes packets unable to be delivered to the destination, and even worse forward them to malicious nodes. A compromised node, which may be a router, intercepts packets going through it, and selectively drops them or can perform some malicious activity. This paper presents a solution to Mitigate unsecured data forwarding related attacks of an underwater sensor network, our solution uses a pre-shared key to secure communication and hashing algorithm to maintain the integrity of stored locations at head node and demonstration of attack and its mitigation done on Unetstack software.
2022-03-23
Islam, Al Amin, Taher, Kazi Abu.  2021.  A Novel Authentication Mechanism for Securing Underwater Wireless Sensors from Sybil Attack. 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). :1—6.
Underwater Wireless Sensor Networks (UWSN) has vast application areas. Due to the unprotected nature, underwater security is a prime concern. UWSN becomes vulnerable to different attacks due to malicious nodes. Sybil attack is one of the major attacks in UWSN. Most of the proposed security methods are based on encryption and decryption which consumes resources of the sensor nodes. In this paper, a simple authentication mechanism is proposed for securing the UWSN from the Sybil attack. As the nodes have very less computation power and energy resources so this work is not followed any kind of encryption and decryption technique. An authentication process is designed in such a way that node engaged in communication authenticate neighboring nodes by node ID and the data stored in the cluster head. This work is also addressed sensor node compromisation issue through Hierarchical Fuzzy System (HFS) based trust management model. The trust management model has been simulated in Xfuzzy-3.5. After the simulation conducted, the proposed trust management mechanism depicts significant performance on detecting compromised nodes.
2021-07-08
Su, Yishan, Zhang, Ting, Jin, Zhigang, Guo, Lei.  2020.  An Anti-Attack Trust Mechanism Based on Collaborative Spectrum Sensing for Underwater Acoustic Sensor Networks. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—5.
The main method for long-distance underwater communication is underwater acoustic communication(UAC). The bandwidth of UAC channel is narrow and the frequency band resources are scarce. Therefore, it is important to improve the frequency band utilization of UAC system. Cognitive underwater acoustic (CUA) technology is an important method. CUA network can share spectrum resources with the primary network. Spectrum sensing (SS) technology is the premise of realizing CUA. Therefore, improving the accuracy of spectral sensing is the main purpose of this paper. However, the realization of underwater SS technology still faces many difficulties. First, underwater energy supplies are scarce, making it difficult to apply complex algorithms. Second, and more seriously, CUA network can sometimes be attacked and exploited by hostile forces, which will not only lead to data leakage, but also greatly affect the accuracy of SS. In order to improve the utilization of underwater spectrum and avoid attack, an underwater spectrum sensing model based on the two-threshold energy detection method and K of M fusion decision method is established. Then, the trust mechanism based on beta function and XOR operation are proposed to combat individual attack and multi-user joint attack (MUJA) respectively. Finally, simulation result shows the effectiveness of these methods.
Signori, Alberto, Campagnaro, Filippo, Wachlin, Kim-Fabian, Nissen, Ivor, Zorzi, Michele.  2020.  On the Use of Conversation Detection to Improve the Security of Underwater Acoustic Networks. Global Oceans 2020: Singapore – U.S. Gulf Coast. :1—8.
Security is one of the key aspects of underwater acoustic networks, due to the critical importance of the scenarios in which these networks can be employed. For example, attacks performed to military underwater networks or to assets deployed for tsunami prevention can lead to disastrous consequences. Nevertheless, countermeasures to possible network attacks have not been widely investigated so far. One way to identify possible attackers is by using reputation, where a node gains trust each time it exhibits a good behavior, and loses trust each time it behaves in a suspicious way. The first step for analyzing if a node is behaving in a good way is to inspect the network traffic, by detecting all conversations. This paper proposes both centralized and decentralized algorithms for performing this operation, either from the network or from the node perspective. While the former can be applied only in post processing, the latter can also be used in real time by each node, and so can be used for creating the trust value. To evaluate the algorithms, we used real experimental data acquired during the EDA RACUN project (Robust Underwater Communication in Underwater Networks).
2017-09-27
Xu, Yanli, Jiang, Shengming, Liu, Feng.  2016.  A LTE-based Communication Architecture for Coastal Networks. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :6:1–6:2.
Currently, the coastal communication is mainly provided by satellite networks, which are expensive with low transmission rate and unable to support underwater communication efficiently. In this work, we propose a communication architecture for coastal network based on long term evolution (LTE) cellular networks in which a cellular network architecture is designed for the maritime communication scenario. Some key technologies of next-generation cellular networks such as device-to-device (D2D) and multiple input multiple output (MIMO) are integrated into the proposed architecture to support more efficient data transmission. In addition, over-water nodes aid the transmission of underwater network to improve the communication quality. With the proposed communication architecture, the coastal network can provide high-quality communication service to traffics with different quality-of-service (QoS) requirements.
Liu, Zhaohui, Guan, Quansheng, Chen, Fangjiong, Liu, Yun.  2016.  Outage Probability Analysis for Unmanned Underwater Vehicle Based Relaying. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :33:1–33:2.
In this work, we develop an underwater relay network model for an unmanned cruise system. By introducing the underwater cruise, we analyze end-to-end outage performance for collecting data from a sensor node. Based on theoretical derivation of the outage probability, we further analyze the optimized location and data rate for relaying.
Fan, Jiasheng, Chen, Fangjiong, Guan, Quansheng, Ji, Fei, Yu, Hua.  2016.  On the Probability of Finding a Receiver in an Ellipsoid Neighborhood of a Sender in 3D Random UANs. Proceedings of the 11th ACM International Conference on Underwater Networks & Systems. :51:1–51:2.
We consider 3-dimensional(3D) underwater random network (UAN) where the nodes are uniformly distributed in a cuboid region. Then we derive the closed-form probability of finding a receiver in an ellipsoid neighborhood of an arbitrary sender. Computer simulation shows that the analytical result is generally consistent with the simulated result.