Biblio
Blockchain, the technology behind the popular Bitcoin, is considered a "security by design" system as it is meant to create security among a group of distrustful parties yet without a central trusted authority. The security of blockchain relies on the premise of honest-majority, namely, the blockchain system is assumed to be secure as long as the majority of consensus voting power is honest. And in the case of proof-of-work (PoW) blockchain, adversaries cannot control more than 50% of the network's gross computing power. However, this 50% threshold is based on the analysis of computing power only, with implicit and idealistic assumptions on the network and node behavior. Recent researches have alluded that factors such as network connectivity, presence of blockchain forks, and mining strategy could undermine the consensus security assured by the honest-majority, but neither concrete analysis nor quantitative evaluation is provided. In this paper we fill the gap by proposing an analytical model to assess the impact of network connectivity on the consensus security of PoW blockchain under different adversary models. We apply our analytical model to two adversarial scenarios: 1) honest-but-potentially-colluding, 2) selfish mining. For each scenario, we quantify the communication capability of nodes involved in a fork race and estimate the adversary's mining revenue and its impact on security properties of the consensus protocol. Simulation results validated our analysis. Our modeling and analysis provide a paradigm for assessing the security impact of various factors in a distributed consensus system.
The labor market involves several untrusted actors with contradicting objectives. We propose a blockchain based system for labor market, which provides benefits to all participants in terms of confidence, transparency, trust and tracking. Our system would handle employment data through new Wavelet blockchain platform. It would change the job market enabling direct agreements between parties without other participants, and providing new mechanisms for negotiating the employment conditions. Furthermore, our system would reduce the need in existing paper workflow as well as in major internet recruiting companies. The key differences of our work from other blockchain based labor record systems are usage of Wavelet blockchain platform, which features metastability, directed acyclic graph system and Turing complete smart contracts platform and introduction of human interaction inside the smart contracts logic, instead of automatic execution of contracts. The results are promising while inconclusive and we would further explore potential of blockchain solutions for labor market problems.
In this paper, we explore the use of the Stellar Consensus Protocol (SCP) and its Federated Byzantine Agreement (FBA) algorithm for ensuring trust and reputation between federated, cloud-based platform instances (nodes) and their participants. Our approach is grounded on federated consensus mechanisms, which promise data quality managed through computational trust and data replication, without a centralized authority. We perform our experimentation on the ground of the NIMBLE cloud manufacturing platform, which is designed to support growth of B2B digital manufacturing communities and their businesses through federated platform services, managed by peer-to-peer networks. We discuss the message exchange flow between the NIMBLE application logic and Stellar consensus logic.
We study the strategic considerations of miners participating in the bitcoin's protocol. We formulate and study the stochastic game that underlies these strategic considerations. The miners collectively build a tree of blocks, and they are paid when they create a node (mine a block) which will end up in the path of the tree that is adopted by all. Since the miners can hide newly mined nodes, they play a game with incomplete information. Here we consider two simplified forms of this game in which the miners have complete information. In the simplest game the miners release every mined block immediately, but are strategic on which blocks to mine. In the second more complicated game, when a block is mined it is announced immediately, but it may not be released so that other miners cannot continue mining from it. A miner not only decides which blocks to mine, but also when to release blocks to other miners. In both games, we show that when the computational power of each miner is relatively small, their best response matches the expected behavior of the bitcoin designer. However, when the computational power of a miner is large, he deviates from the expected behavior, and other Nash equilibria arise.
Cryptocurrencies, such as Bitcoin and 250 similar alt-coins, embody at their core a blockchain protocol –- a mechanism for a distributed network of computational nodes to periodically agree on a set of new transactions. Designing a secure blockchain protocol relies on an open challenge in security, that of designing a highly-scalable agreement protocol open to manipulation by byzantine or arbitrarily malicious nodes. Bitcoin's blockchain agreement protocol exhibits security, but does not scale: it processes 3–7 transactions per second at present, irrespective of the available computation capacity at hand. In this paper, we propose a new distributed agreement protocol for permission-less blockchains called ELASTICO. ELASTICO scales transaction rates almost linearly with available computation for mining: the more the computation power in the network, the higher the number of transaction blocks selected per unit time. ELASTICO is efficient in its network messages and tolerates byzantine adversaries of up to one-fourth of the total computational power. Technically, ELASTICO uniformly partitions or parallelizes the mining network (securely) into smaller committees, each of which processes a disjoint set of transactions (or "shards"). While sharding is common in non-byzantine settings, ELASTICO is the first candidate for a secure sharding protocol with presence of byzantine adversaries. Our scalability experiments on Amazon EC2 with up to \$1, 600\$ nodes confirm ELASTICO's theoretical scaling properties.