Visible to the public Biblio

Filters: Keyword is transmitter  [Clear All Filters]
2023-02-03
Venkatesh, Suresh, Saeidi, Hooman, Sengupta, Kaushik, Lu, Xuyang.  2022.  Millimeter-Wave Physical Layer Security through Space-Time Modulated Transmitter Arrays. 2022 IEEE 22nd Annual Wireless and Microwave Technology Conference (WAMICON). :1–4.
Wireless security and privacy is gaining a significant interest due to the burgeoning growth of communication devices across the electromagnetic spectrum. In this article, we introduce the concept of the space-time modulated millimeter-wave wireless links enabling physical layer security in highspeed communication links. Such an approach does not require cryptographic key exchanges and enables security in a seamless fashion with no overhead on latency. We show both the design and implementation of such a secure system using custom integrated chips at 71-76 GHz with off-chip packaged antenna array. We also demonstrate the security metric of such a system and analyze the efficacy through distributed eavesdropper attack.
2021-04-08
Sarkar, M. Z. I., Ratnarajah, T..  2010.  Information-theoretic security in wireless multicasting. International Conference on Electrical Computer Engineering (ICECE 2010). :53–56.
In this paper, a wireless multicast scenario is considered in which the transmitter sends a common message to a group of client receivers through quasi-static Rayleigh fading channel in the presence of an eavesdropper. The communication between transmitter and each client receiver is said to be secured if the eavesdropper is unable to decode any information. On the basis of an information-theoretic formulation of the confidential communications between transmitter and a group of client receivers, we define the expected secrecy sum-mutual information in terms of secure outage probability and provide a complete characterization of maximum transmission rate at which the eavesdropper is unable to decode any information. Moreover, we find the probability of non-zero secrecy mutual information and present an analytical expression for ergodic secrecy multicast mutual information of the proposed model.
2021-02-10
ZivariFard, H., Bloch, M., Nosratinia, A..  2020.  Keyless Covert Communication in the Presence of Channel State Information. 2020 IEEE International Symposium on Information Theory (ISIT). :834—839.
We consider the problem of covert communication when Channel State Information (CSI) is available non-causally, causally, and strictly causally at both transmitter and receiver, as well as the case when channel state information is only available at the transmitter. Covert communication with respect to an adversary referred to as the "warden", is one in which the distribution induced during communication at the channel output observed by the warden is identical to the output distribution conditioned on an innocent channel-input symbol. In contrast to previous work, we do not assume the availability of a shared key at the transmitter and legitimate receiver; instead shared randomness is extracted from the channel state, in a manner that keeps it secret from the warden despite the influence of the channel state on the warden's output. When CSI is available at both transmitter and receiver, we derive the covert capacity region; when CSI is only available at the transmitter, we derive inner and outer bounds on the covert capacity. We also derive the covert capacity when the warden's channel is less noisy with respect to the legitimate receiver. We provide examples for which covert capacity is zero without channel state information, but is positive in the presence of channel state information.
2020-07-13
Qiu, Yu, Wang, Jin-Yuan, Lin, Sheng-Hong, Wang, Jun-Bo, Lin, Min.  2019.  Secrecy Outage Probability Analysis for Visible Light Communications with SWIPT and Random Terminals. 2019 11th International Conference on Wireless Communications and Signal Processing (WCSP). :1–6.
This paper investigates the physical-layer data secure transmission for indoor visible light communications (VLC) with simultaneous wireless information and power transfer (SWIPT) and random terminals. A typical indoor VLC system including one transmitter, one desired information receiver and one energy receiver is considered. The two receivers are randomly deployed on the floor, and the random channel characteristics is analyzed. Based on the possibility that the energy receiver is a passive information eavesdropper, the secrecy outage probability (SOP) is employed to evaluate the system performance. A closed-from expression for the lower bound of the SOP is obtained. For the derived lower bound of SOP, the theoretical results match the simulation results very well, which indicates that the derived lower bound can be used to evaluate the secrecy performance. Moreover, the gap between the results of the lower bound and the exact simulation results is also small, which verifies the correctness of the analysis method to obtain the lower bound.
2020-05-08
Hafeez, Azeem, Topolovec, Kenneth, Awad, Selim.  2019.  ECU Fingerprinting through Parametric Signal Modeling and Artificial Neural Networks for In-vehicle Security against Spoofing Attacks. 2019 15th International Computer Engineering Conference (ICENCO). :29—38.
Fully connected autonomous vehicles are more vulnerable than ever to hacking and data theft. The controller area network (CAN) protocol is used for communication between in-vehicle control networks (IVN). The absence of basic security features of this protocol, like message authentication, makes it quite vulnerable to a wide range of attacks including spoofing attacks. As traditional cybersecurity methods impose limitations in ensuring confidentiality and integrity of transmitted messages via CAN, a new technique has emerged among others to approve its reliability in fully authenticating the CAN messages. At the physical layer of the communication system, the method of fingerprinting the messages is implemented to link the received signal to the transmitting electronic control unit (ECU). This paper introduces a new method to implement the security of modern electric vehicles. The lumped element model is used to characterize the channel-specific step response. ECU and channel imperfections lead to a unique transfer function for each transmitter. Due to the unique transfer function, the step response for each transmitter is unique. In this paper, we use control system parameters as a feature-set, afterward, a neural network is used transmitting node identification for message authentication. A dataset collected from a CAN network with eight-channel lengths and eight ECUs to evaluate the performance of the suggested method. Detection results show that the proposed method achieves an accuracy of 97.4% of transmitter detection.
2018-12-10
Khan, M., Reza, M. Q., Sirdeshmukh, S. P. S. M. A..  2017.  A prototype model development for classification of material using acoustic resonance spectroscopy. 2017 International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT). :128–131.

In this work, a measurement system is developed based on acoustic resonance which can be used for classification of materials. Basically, the inspection methods based on acoustic, utilized for containers screening in the field, identification of defective pills hold high significance in the fields of health, security and protection. However, such techniques are constrained by costly instrumentation, offline analysis and complexities identified with transducer holder physical coupling. So a simple, non-destructive and amazingly cost effective technique in view of acoustic resonance has been formulated here for quick data acquisition and analysis of acoustic signature of liquids for their constituent identification and classification. In this system, there are two ceramic coated piezoelectric transducers attached at both ends of V-shaped glass, one is act as transmitter and another as receiver. The transmitter generates sound with the help of white noise generator. The pick up transducer on another end of the V-shaped glass rod detects the transmitted signal. The recording is being done with arduino interfaced to computer. The FFTs of recorded signals are being analyzed and the resulted resonant frequency observed for water, water+salt and water+sugar are 4.8 KHz, 6.8 KHz and 3.2 KHz respectively. The different resonant frequency in case different sample is being observed which shows that the developed prototype model effectively classifying the materials.

2018-01-10
Li, W., Ji, J., Zhang, G., Zhang, W..  2016.  Cross-layer security based on optical CDMA and algorithmic cryptography. 2016 IEEE Optoelectronics Global Conference (OGC). :1–2.

In this paper, we introduce an optical network with cross-layer security, which can enhance security performance. In the transmitter, the user's data is encrypted at first. After that, based on optical encoding, physical layer encryption is implemented. In the receiver, after the corresponding optical decoding process, decryption algorithm is used to restore user's data. In this paper, the security performance has been evaluated quantitatively.

2017-12-20
Wang, Fei, Zhang, Xi.  2017.  Secure resource allocation for polarization-enabled green cooperative cognitive radio networks with untrusted secondary users. 2017 51st Annual Conference on Information Sciences and Systems (CISS). :1–6.
We address secure resource allocation for an OFDMA cooperative cognitive radio network (CRN) with energy harvesting (EH) capability. In the network, one primary user (PU) cooperates with several untrusted secondary users (SUs) with one SU transmitter and several SU receivers, where the SU transmitter and all SU receivers may overhear the PU transmitter's information while all SU receivers may eavesdrop on each other's signals. We consider the scenario when SUs are wireless devices with small physical sizes; therefore to improve system performance we suppose that SUs are equipped with co-located orthogonally dual-polarized antennas (ODPAs). With ODPAs, on one hand, the SU transmitter can first harvest energy from radio frequency (RF) signals emitted by the PU transmitter, and then utilize the harvested energy to simultaneously serve the PU and all SU receivers. On the other hand, by exploiting polarization-based signal processing techniques, both the PU's and SUs' physical-layer security can be enhanced. In particular, to ensure the PU's communication security, the PU receiver also sends jamming signals to degrade the reception performance of SUs, and meanwhile the jamming signals can also become new sources of energy powering the SU transmitter. For the considered scenario, we investigate the joint allocation of subcarriers, powers, and power splitting ratios to maximize the total secrecy rate of all SUs while ensuring the PU's minimum secrecy rate requirement. Finally, we evaluate the performance of our resource allocation scheme through numerical analyses.
2017-12-12
Lee, S. H., Wang, L., Khisti, A., Womell, G. W..  2017.  Covert communication with noncausal channel-state information at the transmitter. 2017 IEEE International Symposium on Information Theory (ISIT). :2830–2834.

We consider the problem of covert communication over a state-dependent channel, where the transmitter has non-causal knowledge of the channel states. Here, “covert” means that the probability that a warden on the channel can detect the communication must be small. In contrast with traditional models without noncausal channel-state information at the transmitter, we show that covert communication can be possible with positive rate. We derive closed-form formulas for the maximum achievable covert communication rate (“covert capacity”) in this setting for discrete memoryless channels as well as additive white Gaussian noise channels. We also derive lower bounds on the rate of the secret key that is needed for the transmitter and the receiver to achieve the covert capacity.

2015-05-06
Weikun Hou, Xianbin Wang, Chouinard, J.-Y., Refaey, A..  2014.  Physical Layer Authentication for Mobile Systems with Time-Varying Carrier Frequency Offsets. Communications, IEEE Transactions on. 62:1658-1667.

A novel physical layer authentication scheme is proposed in this paper by exploiting the time-varying carrier frequency offset (CFO) associated with each pair of wireless communications devices. In realistic scenarios, radio frequency oscillators in each transmitter-and-receiver pair always present device-dependent biases to the nominal oscillating frequency. The combination of these biases and mobility-induced Doppler shift, characterized as a time-varying CFO, can be used as a radiometric signature for wireless device authentication. In the proposed authentication scheme, the variable CFO values at different communication times are first estimated. Kalman filtering is then employed to predict the current value by tracking the past CFO variation, which is modeled as an autoregressive random process. To achieve the proposed authentication, the current CFO estimate is compared with the Kalman predicted CFO using hypothesis testing to determine whether the signal has followed a consistent CFO pattern. An adaptive CFO variation threshold is derived for device discrimination according to the signal-to-noise ratio and the Kalman prediction error. In addition, a software-defined radio (SDR) based prototype platform has been developed to validate the feasibility of using CFO for authentication. Simulation results further confirm the effectiveness of the proposed scheme in multipath fading channels.
 

2015-04-30
Ta-Yuan Liu, Mukherjee, P., Ulukus, S., Shih-Chun Lin, Hong, Y.-W.P..  2014.  Secure DoF of MIMO Rayleigh block fading wiretap channels with No CSI anywhere. Communications (ICC), 2014 IEEE International Conference on. :1959-1964.

We consider the block Rayleigh fading multiple-input multiple-output (MIMO) wiretap channel with no prior channel state information (CSI) available at any of the terminals. The channel gains remain constant in a coherence time of T symbols, and then change to another independent realization. The transmitter, the legitimate receiver and the eavesdropper have nt, nr and ne antennas, respectively. We determine the exact secure degrees of freedom (s.d.o.f.) of this system when T ≥ 2 min(nt, nr). We show that, in this case, the s.d.o.f. is exactly (min(nt, nr) - ne)+(T - min(nt, nr))/T. The first term can be interpreted as the eavesdropper with ne antennas taking away ne antennas from both the transmitter and the legitimate receiver. The second term can be interpreted as a fraction of s.d.o.f. being lost due to the lack of CSI at the legitimate receiver. In particular, the fraction loss, min(nt, nr)/T, can be interpreted as the fraction of channel uses dedicated to training the legitimate receiver for it to learn its own CSI. We prove that this s.d.o.f. can be achieved by employing a constant norm channel input, which can be viewed as a generalization of discrete signalling to multiple dimensions.