Visible to the public Biblio

Filters: Keyword is CAPTCHA  [Clear All Filters]
2023-04-14
Rao Varre, Durga Naga Malleswara, Bayana, Jayanag.  2022.  A Secured Botnet Prevention Mechanism for HTTP Flooding Based DDoS Attack. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
HTTP flood DDoS (Distributed Denial of Service) attacks send illegitimate HTTP requests to the targeted site or server. These kinds of attacks corrupt the networks with the help of massive attacking nodes thus blocking incoming traffic. Computer network connected devices are the major source to distributed denial of service attacks (or) botnet attacks. The computer manufacturers rapidly increase the network devices as per the requirement increases in the different environmental needs. Generally the manufacturers cannot ship computer network products with high level security. Those network products require additional security to prevent the DDoS attacks. The present technology is filled with 4G that will impact DDoS attacks. The million DDoS attacks had experienced in every year by companies or individuals. DDoS attack in a network would lead to loss of assets, data and other resources. Purchasing the new equipment and repair of the DDoS attacked network is financially becomes high in the value. The prevention mechanisms like CAPTCHA are now outdated to the bots and which are solved easily by the advanced bots. In the proposed work a secured botnet prevention mechanism provides network security by prevent and mitigate the http flooding based DDoS attack and allow genuine incoming traffic to the application or server in a network environment with the help of integrating invisible challenge and Resource Request Rate algorithms to the application. It offers double security layer to handle malicious bots to prevent and mitigate.
Umar, Mohammad, Ayyub, Shaheen.  2022.  Intrinsic Decision based Situation Reaction CAPTCHA for Better Turing Test. 2022 International Conference on Industry 4.0 Technology (I4Tech). :1–6.
In this modern era, web security is often required to beware from fraudulent activities. There are several hackers try to build a program that can interact with web pages automatically and try to breach the data or make several junk entries due to that web servers get hanged. To stop the junk entries; CAPTCHA is a solution through which bots can be identified and denied the machine based program to intervene with. CAPTCHA stands for Completely Automated Public Turing test to tell Computers and Humans Apart. In the progression of CAPTCHA; there are several methods available such as distorted text, picture recognition, math solving and gaming based CAPTCHA. Game based turing test is very much popular now a day but there are several methods through which game can be cracked because game is not intellectual. So, there is a required of intrinsic CAPTCHA. The proposed system is based on Intrinsic Decision based Situation Reaction Challenge. The proposed system is able to better classify the humans and bots by its intrinsic problem. It has been considered as human is more capable to deal with the real life problems and machine is bit poor to understand the situation or how the problem can be solved. So, proposed system challenges with simple situations which is easier for human but almost impossible for bots. Human is required to use his common sense only and problem can be solved with few seconds.
Priya, A, Ganesh, Abishek, Akil Prasath, R, Jeya Pradeepa, K.  2022.  Cracking CAPTCHAs using Deep Learning. 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS). :437–443.
In this decade, digital transactions have risen exponentially demanding more reliable and secure authentication systems. CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) system plays a major role in these systems. These CAPTCHAs are available in character sequence, picture-based, and audio-based formats. It is very essential that these CAPTCHAs should be able to differentiate a computer program from a human precisely. This work tests the strength of text-based CAPTCHAs by breaking them using an algorithm built on CNN (Convolution Neural Network) and RNN (Recurrent Neural Network). The algorithm is designed in such a way as an attempt to break the security features designers have included in the CAPTCHAs to make them hard to be cracked by machines. This algorithm is tested against the synthetic dataset generated in accordance with the schemes used in popular websites. The experiment results exhibit that the model has shown a considerable performance against both the synthetic and real-world CAPTCHAs.
Chen, Yang, Luo, Xiaonan, Xu, Songhua, Chen, Ruiai.  2022.  CaptchaGG: A linear graphical CAPTCHA recognition model based on CNN and RNN. 2022 9th International Conference on Digital Home (ICDH). :175–180.
This paper presents CaptchaGG, a model for recognizing linear graphical CAPTCHAs. As in the previous society, CAPTCHA is becoming more and more complex, but in some scenarios, complex CAPTCHA is not needed, and usually, linear graphical CAPTCHA can meet the corresponding functional scenarios, such as message boards of websites and registration of accounts with low security. The scheme is based on convolutional neural networks for feature extraction of CAPTCHAs, recurrent neural forests A neural network that is too complex will lead to problems such as difficulty in training and gradient disappearance, and too simple will lead to underfitting of the model. For the single problem of linear graphical CAPTCHA recognition, the model which has a simple architecture, extracting features by convolutional neural network, sequence modeling by recurrent neural network, and finally classification and recognition, can achieve an accuracy of 96% or more recognition at a lower complexity.
Raut, Yash, Pote, Shreyash, Boricha, Harshank, Gunjgur, Prathmesh.  2022.  A Robust Captcha Scheme for Web Security. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–6.
The internet has grown increasingly important in everyone's everyday lives due to the availability of numerous web services such as email, cloud storage, video streaming, music streaming, and search engines. On the other hand, attacks by computer programmes such as bots are a common hazard to these internet services. Captcha is a computer program that helps a server-side company determine whether or not a real user is requesting access. Captcha is a security feature that prevents unauthorised access to a user's account by protecting restricted areas from automated programmes, bots, or hackers. Many websites utilise Captcha to prevent spam and other hazardous assaults when visitors log in. However, in recent years, the complexity of Captcha solving has become difficult for humans too, making it less user friendly. To solve this, we propose creating a Captcha that is both simple and engaging for people while also robust enough to protect sensitive data from bots and hackers on the internet. The suggested captcha scheme employs animated artifacts, rotation, and variable fonts as resistance techniques. The proposed captcha technique proves successful against OCR bots with less than 15% accuracy while being easier to solve for human users with more than 98% accuracy.
ISSN: 2771-1358
Kimbrough, Turhan, Tian, Pu, Liao, Weixian, Blasch, Erik, Yu, Wei.  2022.  Deep CAPTCHA Recognition Using Encapsulated Preprocessing and Heterogeneous Datasets. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an important security technique designed to deter bots from abusing software systems, which has broader applications in cyberspace. CAPTCHAs come in a variety of forms, including the deciphering of obfuscated text, transcribing of audio messages, and tracking mouse movement, among others. This paper focuses on using deep learning techniques to recognize text-based CAPTCHAs. In particular, our work focuses on generating training datasets using different CAPTCHA schemes, along with a pre-processing technique allowing for character-based recognition. We have encapsulated the CRABI (CAPTCHA Recognition with Attached Binary Images) framework to give an image multiple labels for improvement in feature extraction. Using real-world datasets, performance evaluations are conducted to validate the efficacy of our proposed approach on several neural network architectures (e.g., custom CNN architecture, VGG16, ResNet50, and MobileNet). The experimental results confirm that over 90% accuracy can be achieved on most models.
Zuo, Xiaojiang, Wang, Xiao, Han, Rui.  2022.  An Empirical Analysis of CAPTCHA Image Design Choices in Cloud Services. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Cloud service uses CAPTCHA to protect itself from malicious programs. With the explosive development of AI technology and the emergency of third-party recognition services, the factors that influence CAPTCHA’s security are going to be more complex. In such a situation, evaluating the security of mainstream CAPTCHAs in cloud services is helpful to guide better CAPTCHA design choices for providers. In this paper, we evaluate and analyze the security of 6 mainstream CAPTCHA image designs in public cloud services. According to the evaluation results, we made some suggestions of CAPTCHA image design choices to cloud service providers. In addition, we particularly discussed the CAPTCHA images adopted by Facebook and Twitter. The evaluations are separated into two stages: (i) using AI techniques alone; (ii) using both AI techniques and third-party services. The former is based on open source models; the latter is conducted under our proposed framework: CAPTCHAMix.
Hossen, Imran, Hei, Xiali.  2022.  aaeCAPTCHA: The Design and Implementation of Audio Adversarial CAPTCHA. 2022 IEEE 7th European Symposium on Security and Privacy (EuroS&P). :430–447.
CAPTCHAs are designed to prevent malicious bot programs from abusing websites. Most online service providers deploy audio CAPTCHAs as an alternative to text and image CAPTCHAs for visually impaired users. However, prior research investigating the security of audio CAPTCHAs found them highly vulnerable to automated attacks using Automatic Speech Recognition (ASR) systems. To improve the robustness of audio CAPTCHAs against automated abuses, we present the design and implementation of an audio adversarial CAPTCHA (aaeCAPTCHA) system in this paper. The aaeCAPTCHA system exploits audio adversarial examples as CAPTCHAs to prevent the ASR systems from automatically solving them. Furthermore, we conducted a rigorous security evaluation of our new audio CAPTCHA design against five state-of-the-art DNN-based ASR systems and three commercial Speech-to-Text (STT) services. Our experimental evaluations demonstrate that aaeCAPTCHA is highly secure against these speech recognition technologies, even when the attacker has complete knowledge of the current attacks against audio adversarial examples. We also conducted a usability evaluation of the proof-of-concept implementation of the aaeCAPTCHA scheme. Our results show that it achieves high robustness at a moderate usability cost compared to normal audio CAPTCHAs. Finally, our extensive analysis highlights that aaeCAPTCHA can significantly enhance the security and robustness of traditional audio CAPTCHA systems while maintaining similar usability.
2022-06-30
Dankwa, Stephen, Yang, Lu.  2021.  An Optimal and Lightweight Convolutional Neural Network for Performance Evaluation in Smart Cities based on CAPTCHA Solving. 2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). :1—6.
Multimedia Internet of Things (IoT) devices, especially, the smartphones are embedded with sensors including Global Positioning System (GPS), barometer, microphone, accelerometer, etc. These sensors working together, present a fairly complete picture of the citizens' daily activities, with implications for their privacy. With the internet, Citizens in Smart Cities are able to perform their daily life activities online with their connected electronic devices. But, unfortunately, computer hackers tend to write automated malicious applications to attack websites on which these citizens perform their activities. These security threats sometime put their private information at risk. In order to prevent these security threats on websites, Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHAs) are generated, as a form of security mechanism to protect the citizens' private information. But with the advancement of deep learning, text-based CAPTCHAs can sometimes be vulnerable. As a result, it is essential to conduct performance evaluation on the CAPTCHAs that are generated before they are deployed on multimedia web applications. Therefore, this work proposed an optimal and light-weight Convolutional Neural Network (CNN) to solve both numerical and alpha-numerical complex text-based CAPTCHAs simultaneously. The accuracy of the proposed CNN model has been accelerated based on Cyclical Learning Rates (CLRs) policy. The proposed CLR-CNN model achieved a high accuracy to solve both numerical and alpha-numerical text-based CAPTCHAs of 99.87% and 99.66%, respectively. In real-time, we observed that the speed of the model has increased, the model is lightweight, stable, and flexible as compared to other CAPTCHA solving techniques. The result of this current work will increase awareness and will assist multimedia security Researchers to continue and develop more robust text-based CAPTCHAs with their security mechanisms capable of protecting the private information of citizens in Smart Cities.
Dou, Zhongchen.  2021.  The Text Captcha Solver: A Convolutional Recurrent Neural Network-Based Approach. 2021 International Conference on Big Data Analysis and Computer Science (BDACS). :273—283.
Although several different attacks or modern security mechanisms have been proposed, the captchas created by the numbers and the letters are still used by some websites or applications to protect their information security. The reason is that the labels of the captcha data are difficult to collect for the attacker, and protector can easily control the various parameters of the captchas: like the noise, the font type, the font size, and the background color, then make this security mechanism update with the increased attack methods. It can against attacks in different situations very effectively. This paper presents a method to recognize the different text-based captchas based on a system constituted by the denoising autoencoder and the Convolutional Recurrent Neural Network (CRNN) model with the Connectionist Temporal Classification (CTC) structure. We show that our approach has a better performance for recognizing, and it solves the identification problem of indefinite character length captchas efficiently.
Mathai, Angelo, Nirmal, Atharv, Chaudhari, Purva, Deshmukh, Vedant, Dhamdhere, Shantanu, Joglekar, Pushkar.  2021.  Audio CAPTCHA for Visually Impaired. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1—5.
Completely Automated Public Turing Tests (CAPTCHA) have been used to differentiate between computers and humans for quite some time now. There are many different varieties of CAPTCHAs - text-based, image-based, audio, video, arithmetic, etc. However, not all varieties are suitable for the visually impaired. As time goes by and Spambots and APIs grow more accurate, the CAPTCHA tests have been constantly updated to stay relevant, but that has not happened with the audio CAPTCHA. There exists an audio CAPTCHA intended for the blind/visually impaired but many blind/visually impaired find it difficult to solve. We propose an alternative to the existing system, which would make use of unique sound samples layered with music generated through GANs (Generative Adversarial Networks) along with noise and other layers of sounds to make it difficult to dissect. The user has to count the number of times the unique sound was heard in the sample and then input that number. Since there are no letters or numbers involved in the samples, speech-to-text bots/APIs cannot be used directly to decipher this system. Also, any user regardless of their native language can comfortably use this system.
Cao, Yu.  2021.  Digital Character CAPTCHA Recognition Using Convolution Network. 2021 2nd International Conference on Computing and Data Science (CDS). :130—135.
Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is a type of automatic program to determine whether the user is human or not. The most common type of CAPTCHA is a kind of message interpretation by twisting the letters and adding slight noises in the background, plays a role of verification code. In this paper, we will introduce the basis of Convolutional Neural Network first. Then based on the handwritten digit recognition using CNN, we will develop a network for CAPTCHA image recognition.
Mistry, Rahul, Thatte, Girish, Waghela, Amisha, Srinivasan, Gayatri, Mali, Swati.  2021.  DeCaptcha: Cracking captcha using Deep Learning Techniques. 2021 5th International Conference on Information Systems and Computer Networks (ISCON). :1—6.
CAPTCHA or Completely Automated Public Turing test to Tell Computers and Humans Apart is a technique to distinguish between humans and computers by generating and evaluating tests that can be passed by humans but not computer bots. However, captchas are not foolproof, and they can be bypassed which raises security concerns. Hence, sites over the internet remain open to such vulnerabilities. This research paper identifies the vulnerabilities found in some of the commonly used captcha schemes by cracking them using Deep Learning techniques. It also aims to provide solutions to safeguard against these vulnerabilities and provides recommendations for the generation of secure captchas.
Jadhav, Mohit, Kulkarni, Nupur, Walhekar, Omkar.  2021.  Doodling Based CAPTCHA Authentication System. 2021 Asian Conference on Innovation in Technology (ASIANCON). :1—5.
CAPTCHA (Completely Automated Public Turing Test to tell Computers and Humans Apart) is a widely used challenge-measures to distinguish humans and computer automated programs apart. Several existing CAPTCHAs are reliable for normal users, whereas visually impaired users face a lot of problems with the CAPTCHA authentication process. CAPTCHAs such as Google reCAPTCHA alternatively provides audio CAPTCHA, but many users find it difficult to decipher due to noise, language barrier, and accent of the audio of the CAPTCHA. Existing CAPTCHA systems lack user satisfaction on smartphones thus limiting its use. Our proposed system potentially solves the problem faced by visually impaired users during the process of CAPTCHA authentication. Also, our system makes the authentication process generic across users as well as platforms.
Arai, Tsuyoshi, Okabe, Yasuo, Matsumoto, Yoshinori.  2021.  Precursory Analysis of Attack-Log Time Series by Machine Learning for Detecting Bots in CAPTCHA. 2021 International Conference on Information Networking (ICOIN). :295—300.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is commonly utilized as a technology for avoiding attacks to Web sites by bots. State-of-the-art CAPTCHAs vary in difficulty based on the client's behavior, allowing for efficient bot detection without sacrificing simplicity. In this research, we focus on detecting bots by supervised machine learning from access-log time series in the past. We have analysed access logs to several Web services which are using a commercial cloud-based CAPTCHA service, Capy Puzzle CAPTCHA. Experiments show that bot detection in attacks over a month can be performed with high accuracy by precursory analysis of the access log in only the first day as training data. In addition, we have manually analyzed the data that are found to be False Positive in the discrimination results, and it is found that the proposed model actually detects access by bots, which had been overlooked in the first-stage manual discrimination of flags in preparation of training data.
Kumar, Ashwani, Singh, Aditya Pratap.  2021.  Contour Based Deep Learning Engine to Solve CAPTCHA. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:723—727.
A 'Completely Automated Public Turing test to tell Computers and Humans Apart' or better known as CAPTCHA is a image based test used to determine the authenticity of a user (ie. whether the user is human or not). In today's world, almost all the web services, such as online shopping sites, require users to solve CAPTCHAs that must be read and typed correctly. The challenge is that recognizing the CAPTCHAs is a relatively easy task for humans, but it is still hard to solve for computers. Ideally, a well-designed CAPTCHA should be solvable by humans at least 90% of the time, while programs using appropriate resources should succeed in less than 0.01% of the cases. In this paper, a deep neural network architecture is presented to extract text from CAPTCHA images on various platforms. The central theme of the paper is to develop an efficient & intelligent model that converts image-based CAPTCHA to text. We used convolutional neural network based architecture design instead of the traditional methods of CAPTCHA detection using image processing segmentation modules. The model consists of seven layers to efficiently correlate image features to the output character sequence. We tried a wide variety of configurations, including various loss and activation functions. We generated our own images database and the efficacy of our model was proven by the accuracy levels of 99.7%.
Zhou, Ziyue.  2021.  Digit Character CAPTCHA recognition Based on Deep Convolutional Neural Network. 2021 2nd International Conference on Computing and Data Science (CDS). :154—160.
With the developing of computer technology, Convolutional Neural Network (CNN) has made big development in both application region and research field. However, CAPTCHA (one Turing Test to tell difference between computer and human) technology is also widely used in many websites verification process and it has received great attention from researchers. In this essay, we introduced the CNN based on tensorflow framework and use the MINIST data set which is used in handwritten digit recognition to analyze the parameters and the structure of the CNN model. Moreover, we use different activation functions and compares them with different epochs. We also analyze many problems during the experiment to make the original data and the result more accurate.
2021-03-18
Bi, X., Liu, X..  2020.  Chinese Character Captcha Sequential Selection System Based on Convolutional Neural Network. 2020 International Conference on Computer Vision, Image and Deep Learning (CVIDL). :554—559.

To ensure security, Completely Automated Public Turing test to tell Computers and Humans Apart (CAPTCHA) is widely used in people's online lives. This paper presents a Chinese character captcha sequential selection system based on convolutional neural network (CNN). Captchas composed of English and digits can already be identified with extremely high accuracy, but Chinese character captcha recognition is still challenging. The task we need to complete is to identify Chinese characters with different colors and different fonts that are not on a straight line with rotation and affine transformation on pictures with complex backgrounds, and then perform word order restoration on the identified Chinese characters. We divide the task into several sub-processes: Chinese character detection based on Faster R-CNN, Chinese character recognition and word order recovery based on N-Gram. In the Chinese character recognition sub-process, we have made outstanding contributions. We constructed a single Chinese character data set and built a 10-layer convolutional neural network. Eventually we achieved an accuracy of 98.43%, and completed the task perfectly.

Kalaichelvi, T., Apuroop, P..  2020.  Image Steganography Method to Achieve Confidentiality Using CAPTCHA for Authentication. 2020 5th International Conference on Communication and Electronics Systems (ICCES). :495—499.

Steganography is a data hiding technique, which is generally used to hide the data within a file to avoid detection. It is used in the police department, detective investigation, and medical fields as well as in many more fields. Various techniques have been proposed over the years for Image Steganography and also attackers or hackers have developed many decoding tools to break these techniques to retrieve data. In this paper, CAPTCHA codes are used to ensure that the receiver is the intended receiver and not any machine. Here a randomized CAPTCHA code is created to provide additional security to communicate with the authenticated user and used Image Steganography to achieve confidentiality. For achieving secret and reliable communication, encryption and decryption mechanism is performed; hence a machine cannot decode it using any predefined algorithm. Once a secure connection has been established with the intended receiver, the original message is transmitted using the LSB algorithm, which uses the RGB color spectrum to hide the image data ensuring additional encryption.

2020-09-11
A., Jesudoss, M., Mercy Theresa.  2019.  Hardware-Independent Authentication Scheme Using Intelligent Captcha Technique. 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT). :1—7.

This paper provides hardware-independent authentication named as Intelligent Authentication Scheme, which rectifies the design weaknesses that may be exploited by various security attacks. The Intelligent Authentication Scheme protects against various types of security attacks such as password-guessing attack, replay attack, streaming bots attack (denial of service), keylogger, screenlogger and phishing attack. Besides reducing the overall cost, it also balances both security and usability. It is a unique authentication scheme.

Azakami, Tomoka, Shibata, Chihiro, Uda, Ryuya, Kinoshita, Toshiyuki.  2019.  Creation of Adversarial Examples with Keeping High Visual Performance. 2019 IEEE 2nd International Conference on Information and Computer Technologies (ICICT). :52—56.
The accuracy of the image classification by the convolutional neural network is exceeding the ability of human being and contributes to various fields. However, the improvement of the image recognition technology gives a great blow to security system with an image such as CAPTCHA. In particular, since the character string CAPTCHA has already added distortion and noise in order not to be read by the computer, it becomes a problem that the human readability is lowered. Adversarial examples is a technique to produce an image letting an image classification by the machine learning be wrong intentionally. The best feature of this technique is that when human beings compare the original image with the adversarial examples, they cannot understand the difference on appearance. However, Adversarial examples that is created with conventional FGSM cannot completely misclassify strong nonlinear networks like CNN. Osadchy et al. have researched to apply this adversarial examples to CAPTCHA and attempted to let CNN misclassify them. However, they could not let CNN misclassify character images. In this research, we propose a method to apply FGSM to the character string CAPTCHAs and to let CNN misclassified them.
Sain, Mangal, Kim, Ki-Hwan, Kang, Young-Jin, lee, hoon jae.  2019.  An Improved Two Factor User Authentication Framework Based on CAPTCHA and Visual Secret Sharing. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :171—175.

To prevent unauthorized access to adversaries, strong authentication scheme is a vital security requirement in client-server inter-networking systems. These schemes must verify the legitimacy of such users in real-time environments and establish a dynamic session key fur subsequent communication. Of late, T. H. Chen and J. C. Huang proposed a two-factor authentication framework claiming that the scheme is secure against most of the existing attacks. However we have shown that Chen and Huang scheme have many critical weaknesses in real-time environments. The scheme is prone to man in the middle attack and information leakage attack. Furthermore, the scheme does not provide two essential security services such user anonymity and session key establishment. In this paper, we present an enhanced user participating authenticating scheme which overcomes all the weaknesses of Chen et al.'s scheme and provide most of the essential security features.

Ababtain, Eman, Engels, Daniel.  2019.  Security of Gestures Based CAPTCHAs. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :120—126.
We present a security analysis of several gesture CAPTCHA challenges designed to operate on mobiles. Mobile gesture CAPTCHA challenges utilize the accelerometer and the gyroscope inputs from a mobile to allow a human to solve a simple test by physically manipulating the device. We have evaluated the security of gesture CAPTCHA in mobile devices and found them resistant to a range of common automated attacks. Our study has shown that using an accelerometer and the gyroscope readings as an input to solve the CAPTCHA is difficult for malware, but easy for a real user. Gesture CAPTCHA is effective in differentiating between humans and machines.
Kim, Donghoon, Sample, Luke.  2019.  Search Prevention with Captcha Against Web Indexing: A Proof of Concept. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :219—224.
A website appears in search results based on web indexing conducted by a search engine bot (e.g., a web crawler). Some webpages do not want to be found easily because they include sensitive information. There are several methods to prevent web crawlers from indexing in search engine database. However, such webpages can still be indexed by malicious web crawlers. Through this study, we explore a paradox perspective on a new use of captchas for search prevention. Captchas are used to prevent web crawlers from indexing by converting sensitive words to captchas. We have implemented the web-based captcha conversion tool based on our search prevention algorithm. We also describe our proof of concept with the web-based chat application modified to utilize our algorithm. We have conducted the experiment to evaluate our idea on Google search engine with two versions of webpages, one containing plain text and another containing sensitive words converted to captchas. The experiment results show that the sensitive words on the captcha version of the webpages are unable to be found by Google's search engine, while the plain text versions are.
Shekhar, Heemany, Moh, Melody, Moh, Teng-Sheng.  2019.  Exploring Adversaries to Defend Audio CAPTCHA. 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). :1155—1161.
CAPTCHA is a web-based authentication method used by websites to distinguish between humans (valid users) and bots (attackers). Audio captcha is an accessible captcha meant for the visually disabled section of users such as color-blind, blind, near-sighted users. Firstly, this paper analyzes how secure current audio captchas are from attacks using machine learning (ML) and deep learning (DL) models. Each audio captcha is made up of five, seven or ten random digits[0-9] spoken one after the other along with varying background noise throughout the length of the audio. If the ML or DL model is able to correctly identify all spoken digits and in the correct order of occurance in a single audio captcha, we consider that captcha to be broken and the attack to be successful. Throughout the paper, accuracy refers to the attack model's success at breaking audio captchas. The higher the attack accuracy, the more unsecure the audio captchas are. In our baseline experiments, we found that attack models could break audio captchas that had no background noise or medium background noise with any number of spoken digits with nearly 99% to 100% accuracy. Whereas, audio captchas with high background noise were relatively more secure with attack accuracy of 85%. Secondly, we propose that the concepts of adversarial examples algorithms can be used to create a new kind of audio captcha that is more resilient towards attacks. We found that even after retraining the models on the new adversarial audio data, the attack accuracy remained as low as 25% to 36% only. Lastly, we explore the benefits of creating adversarial audio captcha through different algorithms such as Basic Iterative Method (BIM) and deepFool. We found that as long as the attacker has less than 45% sample from each kinds of adversarial audio datasets, the defense will be successful at preventing attacks.