Visible to the public Biblio

Filters: Keyword is coupled congestion control  [Clear All Filters]
2023-05-19
Dazhi, Michael N., Al-Hraishawi, Hayder, Shankar, Mysore R Bhavani, Chatzinotas, Symeon.  2022.  Uplink Capacity Optimization for High Throughput Satellites using SDN and Multi-Orbital Dual Connectivity. 2022 IEEE International Conference on Communications Workshops (ICC Workshops). :544—549.
Dual Connectivity is a key approach to achieving optimization of throughput and latency in heterogeneous networks. Originally a technique introduced by the 3rd Generation Partnership Project (3GPP) for terrestrial communications, it is not been widely explored in satellite systems. In this paper, Dual Connectivity is implemented in a multi-orbital satellite network, where a network model is developed by employing the diversity gains from Dual Connectivity and Carrier Aggregation for the enhancement of satellite uplink capacity. An introduction of software defined network controller is performed at the network layer coupled with a carefully designed hybrid resource allocation algorithm which is implemented strategically. The algorithm performs optimum dynamic flow control and traffic steering by considering the availability of resources and the channel propagation information of the orbital links to arrive at a resource allocation pattern suitable in enhancing uplink system performance. Simulation results are shown to evaluate the achievable gains in throughput and latency; in addition we provide useful insight in the design of multi-orbital satellite networks with implementable scheduler design.
Wejin, John S., Badejo, Joke A., Jonathan, Oluranti, Dahunsi, Folasade.  2022.  A Brief Survey on the Experimental Application of MPQUIC Protocol in Data Communication. 2022 5th Information Technology for Education and Development (ITED). :1—8.
Since its inception, the Internet has experienced tremendous speed and functionality improvements. Among these developments are innovative approaches such as the design and deployment of Internet Protocol version six (IPv6) and the continuous modification of TCP. New transport protocols like Stream Communication Transport Protocol (SCTP) and Multipath TCP (MPTCP), which can use multiple data paths, have been developed to overcome the IP-coupled challenge in TCP. However, given the difficulties of packet modifiers over the Internet that prevent the deployment of newly proposed protocols, e.g., SCTP, a UDP innovative approach with QUIC (Quick UDP Internet Connection) has been put forward as an alternative. QUIC reduces the connection establishment complexity in TCP and its variants, high security, stream multiplexing, and pluggable congestion control. Motivated by the gains and acceptability of MPTCP, Multipath QUIC has been developed to enable multipath transmission in QUIC. While several researchers have reviewed the progress of improvement and application of MPTCP, the review on MPQUIC improvement is limited. To breach the gap, this paper provides a brief survey on the practical application and progress of MPQUIC in data communication. We first review the fundamentals of multipath transport protocols. We then provide details on the design of QUIC and MPQUIC. Based on the articles reviewed, we looked at the various applications of MPQUIC, identifying the application domain, tools used, and evaluation parameters. Finally, we highlighted the open research issues and directions for further investigations.
Kraft, Oliver, Pohl, Oliver, Häger, Ulf, Heussen, Kai, Müller, Nils, Afzal, Zeeshan, Ekstedt, Mathias, Farahmand, Hossein, Ivanko, Dmytro, Singh, Ankit et al..  2022.  Development and Implementation of a Holistic Flexibility Market Architecture. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1—5.
The demand for increasing flexibility use in power systems is stressed by the changing grid utilization. Making use of largely untapped flexibility potential is possible through novel flexibility markets. Different approaches for these markets are being developed and vary considering their handling of transaction schemes and relation of participating entities. This paper delivers the conceptual development of a holistic system architecture for the realization of an interregional flexibility market, which targets a market based congestion management in the transmission and distribution system through trading between system operators and flexibility providers. The framework combines a market mechanism with the required supplements like appropriate control algorithms for emergency situations, cyber-physical system monitoring and cyber-security assessment. The resulting methods are being implemented and verified in a remote-power-hardware-in-the-loop setup coupling a real world low voltage grid with a geographically distant real time simulation using state of the art control system applications with an integration of the aforementioned architecture components.
Gombos, Gergő, Mouw, Maurice, Laki, Sándor, Papagianni, Chrysa, De Schepper, Koen.  2022.  Active Queue Management on the Tofino programmable switch: The (Dual)PI2 case. ICC 2022 - IEEE International Conference on Communications. :1685—1691.
The excess buffering of packets in network elements, also referred to as bufferbloat, results in high latency. Considering the requirements of traffic generated by video conferencing systems like Zoom, cloud rendered gaming platforms like Google Stadia, or even video streaming services such as Netflix, Amazon Prime and YouTube, timeliness of such traffic is important. Ensuring low latency to IP flows with a high throughput calls for the application of Active Queue Management (AQM) schemes. This introduces yet another problem as the co-existence of scalable and classic congestion controls leads to the starvation of classic TCP flows. Technologies such as Low Latency Low Loss Scalable Throughput (L4S) and the corresponding dual queue coupled AQM, DualPI2, provide a robust solution to these problems. However, their deployment on hardware targets such as programmable switches is quite challenging due to the complexity of algorithms and architectural constraints of switching ASICs. In this study, we provide proof of concept implementations of two AQMs that enable the co-existence of scalable and traditional TCP traffic, namely DualPI2 and the preceding single-queue PI2 AQM, on an Intel Tofino switching ASIC. Given the fixed operation of the switch’s traffic manager, we investigate to what extent it is possible to implement a fully RFC-compliant version of the two AQMs on the Tofino ASIC. The study shows that an appropriate split between control and data plane operations is required while we also exploit fixed functionality of the traffic manager to support such solutions.
2022-08-26
Nougnanke, Kokouvi Benoit, Labit, Yann, Bruyere, Marc, Ferlin, Simone, Aïvodji, Ulrich.  2021.  Learning-based Incast Performance Inference in Software-Defined Data Centers. 2021 24th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :118–125.
Incast traffic is a many-to-one communication pattern used in many applications, including distributed storage, web-search with partition/aggregation design pattern, and MapReduce, commonly in data centers. It is generally composed of short-lived flows that may be queued behind large flows' packets in congested switches where performance degradation is observed. Smart buffering at the switch level is sensed to mitigate this issue by automatically and dynamically adapting to traffic conditions changes in the highly dynamic data center environment. But for this dynamic and smart buffer management to become effectively beneficial for all the traffic, and especially for incast the most critical one, incast performance models that provide insights on how various factors affect it are needed. The literature lacks these types of models. The existing ones are analytical models, which are either tightly coupled with a particular protocol version or specific to certain empirical data. Motivated by this observation, we propose a machine-learning-based incast performance inference. With this prediction capability, smart buffering scheme or other QoS optimization algorithms could anticipate and efficiently optimize system parameters adjustment to achieve optimal performance. Since applying machine learning to networks managed in a distributed fashion is hard, the prediction mechanism will be deployed on an SDN control plane. We could then take advantage of SDN's centralized global view, its telemetry capabilities, and its management flexibility.
Mamushiane, Lusani, Shozi, Themba.  2021.  A QoS-based Evaluation of SDN Controllers: ONOS and OpenDayLight. 2021 IST-Africa Conference (IST-Africa). :1–10.
SDN marks a paradigm shift towards an externalized and logically centralized controller, unlike the legacy networks where control and data planes are tightly coupled. The controller has a comprehensive view of the network, offering flexibility to enforce new traffic engineering policies and easing automation. In SDN, a high performance controller is required for efficient traffic management. In this paper, we conduct a performance evaluation of two distributed SDN controllers, namely ONOS and OpenDayLight. Specifically, we use the Mininet emulation environment to emulate different topologies and the D-ITG traffic generator to evaluate aforementioned controllers based on metrics such as delay, jitter and packet loss. The experimental results show that ONOS provides a significantly higher latency, jitter and low packet loss than OpenDayLight in all topologies. We attribute the poor performance of OpenDayLight to its excessive CPU utilization and propose the use of Hyper-threading to improve its performance. This work provides practitioners in the telecoms industry with guidelines towards making informed controller selection decisions
U, Shriya, S, Veena H.  2021.  Increasing Grid Power Transmission Using PV-STATCOM. 2021 6th International Conference for Convergence in Technology (I2CT). :1–5.
Renewable energy resource plays an important role due to increasing energy claim. Power generation by PV technology is one of the fastest growing renewable energy sources due to its clean, economical and sustainable property. Grid integrated PV systems plays an important role in power generation sector. As the energy demand is increasing day by day, the power transfer capability of transmission line is increasing which leads various problems like stability, increase in fault current, congestion etc. To overcome the problem, we can use either FACTS device or battery storage or construct additional lines which is cost effective. This paper deals with grid connected PV system, which functions as PV-STATCOM. Voltage and damping control are used to elevate the power transfer capacity and to achieve regulated voltage within the limits at the point of common coupling (PCC). The studies are performed on SMIB and the simulation is carried out in MATLAB/SIMULINK environment.
Yuan, Quan, Ye, Yujian, Tang, Yi, Liu, Xuefei, Tian, Qidong.  2021.  Optimal Load Scheduling in Coupled Power and Transportation Networks. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1512–1517.
As a part of the global decarbonization agenda, the electrification of the transport sector involving the large-scale integration of electric vehicles (EV) constitues one of the key initiatives. However, the introduction of EV loads results in more variable electrical demand profiles and higher demand peaks, challenging power system balancing, voltage and network congestion management. In this paper, a novel optimal load scheduling approach for a coupled power and transportation network is proposed. It employs an EV charging demand forecasting model to generate the temporal-spatial distribution of the aggregate EV loads taking into account the uncertainties stemmed from the traffic condition. An AC optimal power flow (ACOPF) problem is formulated and solved to determine the scheduling decisions for the EVs, energy storage units as well as other types of flexible loads, taking into account their operational characteristics. Convex relaxation is performed to convert the original non-convex ACOPF problem to a second order conic program. Case studies demonstrate the effectiveness of the proposed scheduling strategy in accurately forecasting the EV load distribution as well as effectively alleviating the voltage deviation and network congestion in the distribution network through optimal load scheduling control decisions.
Razack, Aquib Junaid, Ajith, Vysyakh, Gupta, Rajiv.  2021.  A Deep Reinforcement Learning Approach to Traffic Signal Control. 2021 IEEE Conference on Technologies for Sustainability (SusTech). :1–7.
Traffic Signal Control using Reinforcement Learning has been proved to have potential in alleviating traffic congestion in urban areas. Although research has been conducted in this field, it is still an open challenge to find an effective but low-cost solution to this problem. This paper presents multiple deep reinforcement learning-based traffic signal control systems that can help regulate the flow of traffic at intersections and then compares the results. The proposed systems are coupled with SUMO (Simulation of Urban MObility), an agent-based simulator that provides a realistic environment to explore the outcomes of the models.
Tumash, Liudmila, Canudas-de-Wit, Carlos, Monache, Maria Laura Delle.  2021.  Boundary Control for Multi-Directional Traffic on Urban Networks. 2021 60th IEEE Conference on Decision and Control (CDC). :2671–2676.
This paper is devoted to boundary control design for urban traffic described on a macroscopic scale. The state corresponds to vehicle density that evolves on a continuum two-dimensional domain that represents a continuous approximation of a urban network. Its parameters are interpolated as a function of distance to physical roads. The dynamics are governed by a new macroscopic multi-directional traffic model that encompasses a system of four coupled partial differential equations (PDE) each describing density evolution in one direction layer: North, East, West and South (NEWS). We analyse the class of desired states that the density governed by NEWS model can achieve. Then a boundary control is designed to drive congested traffic to an equilibrium with the minimal congestion level. The result is validated numerically using the real structure of Grenoble downtown (a city in France).
Hao, Yihang.  2021.  Frequency Reconfigurable Microstrip Bandpass Filter Based on VO2. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :827–831.
Reconfigurability is very popular in advanced highly integrated wireless communication circuits and systems, which is valuable for mitigating spectrum congestion and reducing signal interference. To reduce interference and meet the different wireless standards in different countries, frequency reconfigurable filters are promising. Concurrently, due to the conductor and semiconductor properties of VO2 at different temperatures or pressures, the phase transition characteristics of new material VO2 are applied to reconfigurable filters. This paper mainly discusses the application of phase transition characteristics of VO2 materials in filter design and proposes a frequency reconfigurable microstrip bandpass filter based on VO2 materials, in which the microstrip filter adopts the design form of end coupling. Through theoretical calculation, data analysis, and the establishment of the equivalent model of VO2 phase transition, a related design is proposed. An end-coupled microband bandpass filter centered at a reconfigurable frequency (6 GHz to 6.5 GHz) with fractional bandwidth of 2.8% has been designed, which shows consistent match with the expected ones and verify the validity of the proposed method.
Mao, Zeyu, Sahu, Abhijeet, Wlazlo, Patrick, Liu, Yijing, Goulart, Ana, Davis, Katherine, Overbye, Thomas J..  2021.  Mitigating TCP Congestion: A Coordinated Cyber and Physical Approach. 2021 North American Power Symposium (NAPS). :1–6.
The operation of the modern power grid is becoming increasingly reliant on its underlying communication network, especially within the context of the rapidly growing integration of Distributed Energy Resources (DERs). This tight cyber-physical coupling brings uncertainties and challenges for the power grid operation and control. To help operators manage the complex cyber-physical environment, ensure the integrity, and continuity of reliable grid operation, a two-stage approach is proposed that is compatible with current ICS protocols to improve the deliverability of time critical operations. With the proposed framework, the impact Denial of Service (DoS) attack can have on a Transmission Control Protocol (TCP) session could be effectively prevented and mitigated. This coordinated approach combines the efficiency of congestion window reconfiguration and the applicability of physical-only mitigation approaches. By expanding the state and action space to encompass both the cyber and physical domains. This approach has been proven to outperform the traditional, physical-only method, in multiple network congested scenarios that were emulated in a real-time cyber-physical testbed.
Zhang, Yuan, Li, Jian, Yang, Jiayu, Xing, Yitao, Zhuang, Rui, Xue, Kaiping.  2021.  Low Priority Congestion Control for Multipath TCP. 2021 IEEE Global Communications Conference (GLOBECOM). :1–6.

Many applications are bandwidth consuming but may tolerate longer flow completion times. Multipath protocols, such as multipath TCP (MPTCP), can offer bandwidth aggregation and resilience to link failures for such applications, and low priority congestion control (LPCC) mechanisms can make these applications yield to other time-sensitive ones. Properly combining the above two can improve the overall user experience. However, the existing LPCC mechanisms are not adequate for MPTCP. They do not take into account the characteristics of multiple network paths, and cannot ensure fairness among the same priority flows. Therefore, we propose a multipath LPCC mechanism, i.e., Dynamic Coupled Low Extra Delay Background Transport, named DC-LEDBAT. Our scheme is designed based on a standardized LPCC mechanism LEDBAT. To avoid unfairness among the same priority flows, DC-LEDBAT trades little throughput for precisely measuring the minimum delay. Moreover, to be friendly to single-path LEDBAT, our scheme leverages the correlation of the queuing delay to detect whether multiple paths go through a shared bottleneck. Then, DC-LEDBAT couples the congestion window at shared bottlenecks to control the sending rate. We implement DC-LEDBAT in a Linux kernel and experimental results show that DC-LEDBAT can not only utilize the excess bandwidth of MPTCP but also ensure fairness among the same priority flows.

Flohr, Julius, Rathgeb, Erwin P..  2021.  Reducing End-to-End Delays in WebRTC using the FSE-NG Algorithm for SCReAM Congestion Control. 2021 IEEE 18th Annual Consumer Communications & Networking Conference (CCNC). :1–4.
The 2020 Corona pandemic has shown that on-line real-time multimedia communication is of vital importance when regular face-to-face meetings are not possible. One popular choice for conducting these meetings is the open standard WebRTC which is implemented in every major web browser. Even though this technology has found widespread use, there are still open issues with how different congestion control (CC) algorithms of Media- and DataChannels interact. In 2018 we have shown that the issue of self-inflicted queuing delay can be mitigated by introducing a CC coupling mechanism called FSE-NG. Originally, this solution was only capable of linking DataChannel flows controlled by TCP-style CCs and MediaChannels controlled by NADA CC. Standardization has progressed and along with NADA, IETF has also standardized the RTP CC SCReAM. This work extends the FSE-NG algorithm to also incorporate flows controlled by the latter algorithm. By means of simulation, we show that our approach is capable of drastically reducing end-to-end delays while also increasing RTP throughput and thus enabling WebRTC communication in scenarios where it has not been applicable before.
2021-09-07
Thie, Nicolas, Franken, Marco, Schwaeppe, Henrik, Böttcher, Luis, Müller, Christoph, Moser, Albert, Schumann, Klemens, Vigo, Daniele, Monaci, Michele, Paronuzzi, Paolo et al..  2020.  Requirements for Integrated Planning of Multi-Energy Systems. 2020 6th IEEE International Energy Conference (ENERGYCon). :696–701.
The successful realization of the climate goals agreed upon in the European Union's COP21 commitments makes a fundamental change of the European energy system necessary. In particular, for a reduction of greenhouse gas emissions over 80%, the use of renewable energies must be increased not only in the electricity sector but also across all energy sectors, such as heat and mobility. Furthermore, a progressive integration of renewable energies increases the risk of congestions in the transmission grid and makes network expansion necessary. An efficient planning for future energy systems must comprise the coupling of energy sectors as well as interdependencies of generation and transmission grid infrastructure. However, in traditional energy system planning, these aspects are considered as decoupled. Therefore, the project PlaMES develops an approach for integrated planning of multi-energy systems on a European scale. This paper aims at analyzing the model requirements and describing the modeling approach.
Gameiro, Luís, Senna, Carlos, Luís, Miguel.  2020.  Context-Based Forwarding for Mobile ICNs. 2020 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
Over the last couple of decades, mobile ad-hoc networks (MANETs) have been at the forefront of research, yet still are afflicted by high network fragmentation, due to their continuous node mobility and geographical dispersion. To address these concerns, a new paradigm was proposed, Information-Centric Networks (ICN), whose focus is the delivery of Content based on names. This article aims to use ICN concepts towards the delivery of both urgent and non-urgent information in urban mobile environments. In order to do so, a context-based forwarding strategy was proposed, with a very clear goal: to take advantage of both packet Names and Data, and node's neighborhood analysis in order to successfully deliver content into the network in the shortest period of time, and without worsening network congestion. The design, implementation and validation of the proposed strategy was performed using the ndnSIM platform along with real mobility traces from communication infrastructure of the Porto city. The results show that the proposed context-based forwarding strategy presents a clear improvement regarding the Data resolution, while maintaining network overhead at a constant.
Tirupathi, Chittibabu, Hamdaoui, Bechir, Rayes, Ammar.  2020.  HybridCache: AI-Assisted Cloud-RAN Caching with Reduced In-Network Content Redundancy. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
The ever-increasing growth of urban populations coupled with recent mobile data usage trends has led to an unprecedented increase in wireless devices, services and applications, with varying quality of service needs in terms of latency, data rate, and connectivity. To cope with these rising demands and challenges, next-generation wireless networks have resorted to cloud radio access network (Cloud-RAN) technology as a way of reducing latency and network traffic. A concrete example of this is New York City's LinkNYC network infrastructure, which replaces the city's payphones with kiosk-like structures, called Links, to provide fast and free public Wi-Fi access to city users. When enabled with data storage capability, these Links can, for example, play the role of edge cloud devices to allow in-network content caching so that access latency and network traffic are reduced. In this paper, we propose HybridCache, a hybrid proactive and reactive in-network caching scheme that reduces content access latency and network traffic congestion substantially. It does so by first grouping edge cloud devices in clusters to minimize intra-cluster content access latency and then enabling cooperative-proactively and reactively-caching using LSTM-based prediction to minimize in-network content redundancy. Using the LinkNYC network as the backbone infrastructure for evaluation, we show that HybridCache reduces the number of hops that content needs to traverse and increases cache hit rates, thereby reducing both network traffic and content access latency.
Khan, Humayun Zubair, Ali, Mudassar, Naeem, Muhammad, Rashid, Imran, Siddiqui, Adil Masood, Imran, Muhammad, Mumtaz, Shahid.  2020.  Resource Allocation and Throughput Maximization in Decoupled 5G. 2020 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Traditional downlink (DL)-uplink (UL) coupled cell association scheme is suboptimal solution for user association as most of the users are associated to a high powered macro base station (MBS) compared to low powered small base station (SBS) in heterogeneous network. This brings challenges like multiple interference issues, imbalanced user traffic load which leads to a degraded throughput in HetNet. In this paper, we investigate DL-UL decoupled cell association scheme to address these challenges and formulate a sum-rate maximization problem in terms of admission control, cell association and power allocation for MBS only, coupled and decoupled HetNet. The formulated optimization problem falls into a class of mixed integer non linear programming (MINLP) problem which is NP-hard and requires an exhaustive search to find the optimal solution. However, computational complexity of the exhaustive search increases exponentially with the increase in number of users. Therefore, an outer approximation algorithm (OAA), with less complexity, is proposed as a solution to find near optimal solution. Extensive simulations work have been done to evaluate proposed algorithm. Results show effectiveness of proposed novel decoupled cell association scheme over traditional coupled cell association scheme in terms of users associated/attached, mitigating interference, traffic offloading to address traffic imbalances and sum-rate maximization.
Faqir, Nada, En-Nahnahi, Noureddine, Boumhidi, Jaouad.  2020.  Deep Q-learning Approach for Congestion Problem In Smart Cities. 2020 Fourth International Conference On Intelligent Computing in Data Sciences (ICDS). :1–6.
Traffic congestion is a critical problem in urban area. In this study, our objective is the control of traffic lights in an urban environment, in order to avoid traffic jams and optimize vehicle traffic; we aim to minimize the total waiting time. Our system is based on a new paradigm, which is deep reinforcement learning; it can automatically learn all the useful characteristics of traffic data and develop a strategy optimizing adaptive traffic light control. Our system is coupled to a microscopic simulator based on agents (Simulation of Urban MObility - SUMO) providing a synthetic but realistic environment in which the exploration of the results of potential regulatory actions can be carried out.
Schmitt, Carlo, Sous, Tobias, Blank, Andreas, Gaumnitz, Felix, Moser, Albert.  2020.  A Linear Programing Formulation of Time-Coupled Flexibility Market Bids by Storage Systems. 2020 55th International Universities Power Engineering Conference (UPEC). :1–6.
Local flexibility markets are a concept to integrate distributed flexibilities such as power-to-gas, power-to-heat systems, electric vehicles, and battery storage systems into congestion management of distribution and transmission grids. However, the activation of the flexibility of storage systems changes their state-of-charge and thus reduces their available flexibility. Counter-trading or compensation of activated flexibility in later points of time lets storage operators regain flexibility. However, this compensation might create or amplify congestions when not supervised by system operators. Therefore, we propose the inclusion of compensation within the flexibility market clearing process by system operators. We further develop a linear formulation of flexibility market bids by storage systems that takes the need for compensation into account. For this, first, the operational planning formulation of a storage system is expanded by flexibility market participation. Subsequently, the linear formulation of bids is derived and demonstrated.
Zhang, Xinghai, Zhuang, Zhen, Liu, Genggeng, Huang, Xing, Liu, Wen-Hao, Guo, Wenzhong, Wang, Ting-Chi.  2020.  MiniDelay: Multi-Strategy Timing-Aware Layer Assignment for Advanced Technology Nodes. 2020 Design, Automation Test in Europe Conference Exhibition (DATE). :586–591.
Layer assignment, a major step in global routing of integrated circuits, is usually performed to assign segments of nets to multiple layers. Besides the traditional optimization goals such as overflow and via count, interconnect delay plays an important role in determining chip performance and has been attracting much attention in recent years. Accordingly, in this paper, we propose MiniDelay, a timing-aware layer assignment algorithm to minimize delay for advanced technology nodes, taking both wire congestion and coupling effect into account. MiniDelay consists of the following three key techniques: 1) a non-default-rule routing technique is adopted to reduce the delay of timing critical nets, 2) an effective congestion assessment method is proposed to optimize delay of nets and via count simultaneously, and 3) a net scalpel technique is proposed to further reduce the maximum delay of nets, so that the chip performance can be improved in a global manner. Experimental results on multiple benchmarks confirm that the proposed algorithm leads to lower delay and few vias, while achieving the best solution quality among the existing algorithms with the shortest runtime.
Liu, Shu, Tao, Xingyu, Hu, Wenmin.  2020.  Planning Method of Transportation and Power Coupled System Based on Road Expansion Model. 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). :361–366.
In this paper, a planning method of transportation-power coupled system based on road expansion model is proposed. First of all, based on the Wardrop equilibrium state, the traffic flow is distributed, to build the road expansion model and complete the traffic network modeling. It is assumed that the road charging demand is directly proportional to the road traffic flow, and the charging facilities will cause a certain degree of congestion on the road. This mutual influence relationship to establish a coupling system of transportation network and power network is used for the planning. In the planning method, the decision variables include the location of charging facilities, the setting of energy storage systems and the road expansion scheme. The planning goal is to minimize the investment cost and operation cost. The CPLEX solver is used to solve the mixed integer nonlinear programming problem. Finally, the simulation analysis is carried out to verify the validity and feasibility of the planning method, which can comprehensively consider the road expansion cost and travel time cost, taking a coupled system of 5-node traffic system and IEEE14 node distribution network as example.
Mueller, Felicitas, Hentschel, Paul, de Jongh, Steven, Held, Lukas, Suriyah, Michael, Leibried, Thomas.  2020.  Congestion Management of the German Transmission Grid through Sector Coupling: A Modeling Approach. 2020 55th International Universities Power Engineering Conference (UPEC). :1–6.
The progressive expansion of renewable energies, especially wind power plants being promoted in Germany as part of the energy transition, places new demands on the transmission grid. As an alternative to grid expansion, sector coupling of the gas and electricity sector through Power-to-Gas (PtG) technology is seen as a great opportunity to make the energy transmission more flexible and reliable in the future as well as make use of already existing gas infrastructure. In this paper, PtG plants are dimensioned and placed in a model of the German transmission grid. Time series based load flow calculations are performed allowing conclusions about the line loading for the exemplary year 2016.
Tarek, Md Nurul Anwar, Novak, Markus, Alwan, Elias A..  2020.  RF Coupling Suppression Circuit for Simultaneous Transmit and Receive Systems. 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. :1833–1834.
Wireless technology is growing at a fast rate to accommodate the expanding user demands. Currently the radio frequency (RF) spectrum is highly congested and more susceptible to signal fratricide and interference. Therefore, full duplexing techniques are required to enhance the access to the spectrum. Simultaneous Transmit and receive systems (STAR), also known as in-band full duplex systems, are gaining higher attention due to their capability to double spectral efficiency. However, successful implementation of STAR systems requires significant isolation between the transmit and receive signals to reduce self-interference (SI) signal. To minimize this self-interference, front-end coupling cancellation circuits are employed in STAR system. In this paper, an RF coupling suppression circuit is presented based on a hybrid finite impulse response filter (FIR) and resonator architecture. Notably, this newly developed FIR-resonator circuit achieves \textbackslashtextgreater30dB cancellation across a \textbackslashtextgreater1.5:1 bandwidth.
2020-12-02
Scheffer, V., Ipach, H., Becker, C..  2019.  Distribution Grid State Assessment for Control Reserve Provision Using Boundary Load Flow. 2019 IEEE Milan PowerTech. :1—6.

With the increasing expansion of wind and solar power plants, these technologies will also have to contribute control reserve to guarantee frequency stability within the next couple of years. In order to maintain the security of supply at the same level in the future, it must be ensured that wind and solar power plants are able to feed in electricity into the distribution grid without bottlenecks when activated. The present work presents a grid state assessment, which takes into account the special features of the control reserve supply. The identification of a future grid state, which is necessary for an ex ante evaluation, poses the challenge of forecasting loads. The Boundary Load Flow method takes load uncertainties into account and is used to estimate a possible interval for all grid parameters. Grid congestions can thus be detected preventively and suppliers of control reserve can be approved or excluded. A validation in combination with an exemplary application shows the feasibility of the overall methodology.