Biblio
Algorithms for unsupervised anomaly detection have proven their effectiveness and flexibility, however, first it is necessary to calculate with what ratio a certain class begins to be considered anomalous by the autoencoder. For this reason, we propose to conduct a study of the efficiency of autoencoders depending on the ratio of anomalous and non-anomalous classes. The emergence of high-speed networks in electric power systems creates a tight interaction of cyberinfrastructure with the physical infrastructure and makes the power system susceptible to cyber penetration and attacks. To address this problem, this paper proposes an innovative approach to develop a specification-based intrusion detection framework that leverages available information provided by components in a contemporary power system. An autoencoder is used to encode the causal relations among the available information to create patterns with temporal state transitions, which are used as features in the proposed intrusion detection. This allows the proposed method to detect anomalies and cyber attacks.
Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.
Modern industrial control systems (ICS) act as victims of cyber attacks more often in last years. These cyber attacks often can not be detected by classical information security methods. Moreover, the consequences of cyber attack's impact can be catastrophic. Since cyber attacks leads to appearance of anomalies in the ICS and technological equipment controlled by it, the task of intrusion detection for ICS can be reformulated as the task of industrial process anomaly detection. This paper considers the applicability of generative adversarial networks (GANs) in the field of industrial processes anomaly detection. Existing approaches for GANs usage in the field of information security (such as anomaly detection in network traffic) were described. It is proposed to use the BiGAN architecture in order to detect anomalies in the industrial processes. The proposed approach has been tested on Secure Water Treatment Dataset (SWaT). The obtained results indicate the prospects of using the examined method in practice.
With the increasing inter-connection of operation technology to the IT network, the security threat to the Industrial Control System (ICS) is increasing daily. Therefore, it is critical to utilize formal verification technique such as model checking to mathematically prove the correctness of security and safety requirements in the controller logic before it is deployed on the field. However, model checking requires considerable effort for regular ICS users and control technician to verify properties. This paper, provides a simpler approach to the model checking of temperature process control system by first starting with the control module design without formal verification. Second, identifying possible vulnerabilities in such design. Third, verifying the safety and security properties with a formal method.
Industrial Control Systems (ICS) are widely deployed in mission critical infrastructures such as manufacturing, energy, and transportation. The mission critical nature of ICS devices poses important security challenges for ICS vendors and asset owners. In particular, the patching of ICS devices is usually deferred to scheduled production outages so as to prevent potential operational disruption of critical systems. In this paper, we present the results from our longitudinal measurement and characterization study of ICS patching behavior. Our analysis of more than 100 thousand Internet-exposed ICS devices reveals that fewer than 30% upgrade to newer patched versions within 60 days of a vulnerability disclosure. Based on our measurement and analysis, we further propose a model to forecast the patching behavior of ICS devices.