Visible to the public Biblio

Filters: Keyword is Cyber Dependencies  [Clear All Filters]
2023-06-09
Plambeck, Swantje, Fey, Görschwin, Schyga, Jakob, Hinckeldeyn, Johannes, Kreutzfeldt, Jochen.  2022.  Explaining Cyber-Physical Systems Using Decision Trees. 2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS). :3—8.
Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.
Qiang, Weizhong, Luo, Hao.  2022.  AutoSlicer: Automatic Program Partitioning for Securing Sensitive Data Based-on Data Dependency Analysis and Code Refactoring. 2022 IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :239—247.
Legacy programs are normally monolithic (that is, all code runs in a single process and is not partitioned), and a bug in a program may result in the entire program being vulnerable and therefore untrusted. Program partitioning can be used to separate a program into multiple partitions, so as to isolate sensitive data or privileged operations. Manual program partitioning requires programmers to rewrite the entire source code, which is cumbersome, error-prone, and not generic. Automatic program partitioning tools can separate programs according to the dependency graph constructed based on data or programs. However, programmers still need to manually implement remote service interfaces for inter-partition communication. Therefore, in this paper, we propose AutoSlicer, whose purpose is to partition a program more automatically, so that the programmer is only required to annotate sensitive data. AutoSlicer constructs accurate data dependency graphs (DDGs) by enabling execution flow graphs, and the DDG-based partitioning algorithm can compute partition information based on sensitive annotations. In addition, the code refactoring toolchain can automatically transform the source code into sensitive and insensitive partitions that can be deployed on the remote procedure call framework. The experimental evaluation shows that AutoSlicer can effectively improve the accuracy (13%-27%) of program partitioning by enabling EFG, and separate real-world programs with a relatively smaller performance overhead (0.26%-9.42%).
Liu, Chengwei, Chen, Sen, Fan, Lingling, Chen, Bihuan, Liu, Yang, Peng, Xin.  2022.  Demystifying the Vulnerability Propagation and Its Evolution via Dependency Trees in the NPM Ecosystem. 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). :672—684.
Third-party libraries with rich functionalities facilitate the fast development of JavaScript software, leading to the explosive growth of the NPM ecosystem. However, it also brings new security threats that vulnerabilities could be introduced through dependencies from third-party libraries. In particular, the threats could be excessively amplified by transitive dependencies. Existing research only considers direct dependencies or reasoning transitive dependencies based on reachability analysis, which neglects the NPM-specific dependency resolution rules as adapted during real installation, resulting in wrongly resolved dependencies. Consequently, further fine-grained analysis, such as precise vulnerability propagation and their evolution over time in dependencies, cannot be carried out precisely at a large scale, as well as deriving ecosystem-wide solutions for vulnerabilities in dependencies. To fill this gap, we propose a knowledge graph-based dependency resolution, which resolves the inner dependency relations of dependencies as trees (i.e., dependency trees), and investigates the security threats from vulnerabilities in dependency trees at a large scale. Specifically, we first construct a complete dependency-vulnerability knowledge graph (DVGraph) that captures the whole NPM ecosystem (over 10 million library versions and 60 million well-resolved dependency relations). Based on it, we propose a novel algorithm (DTResolver) to statically and precisely resolve dependency trees, as well as transitive vulnerability propagation paths, for each package by taking the official dependency resolution rules into account. Based on that, we carry out an ecosystem-wide empirical study on vulnerability propagation and its evolution in dependency trees. Our study unveils lots of useful findings, and we further discuss the lessons learned and solutions for different stakeholders to mitigate the vulnerability impact in NPM based on our findings. For example, we implement a dependency tree based vulnerability remediation method (DTReme) for NPM packages, and receive much better performance than the official tool (npm audit fix).
Williams, Daniel, Clark, Chelece, McGahan, Rachel, Potteiger, Bradley, Cohen, Daniel, Musau, Patrick.  2022.  Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Thiruloga, Sooryaa Vignesh, Kukkala, Vipin Kumar, Pasricha, Sudeep.  2022.  TENET: Temporal CNN with Attention for Anomaly Detection in Automotive Cyber-Physical Systems. 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC). :326—331.
Modern vehicles have multiple electronic control units (ECUs) that are connected together as part of a complex distributed cyber-physical system (CPS). The ever-increasing communication between ECUs and external electronic systems has made these vehicles particularly susceptible to a variety of cyber-attacks. In this work, we present a novel anomaly detection framework called TENET to detect anomalies induced by cyber-attacks on vehicles. TENET uses temporal convolutional neural networks with an integrated attention mechanism to learn the dependency between messages traversing the in-vehicle network. Post deployment in a vehicle, TENET employs a robust quantitative metric and classifier, together with the learned dependencies, to detect anomalous patterns. TENET is able to achieve an improvement of 32.70% in False Negative Rate, 19.14% in the Mathews Correlation Coefficient, and 17.25% in the ROC-AUC metric, with 94.62% fewer model parameters, and 48.14% lower inference time compared to the best performing prior works on automotive anomaly detection.
Zhao, Junjie, Xu, Bingfeng, Chen, Xinkai, Wang, Bo, He, Gaofeng.  2022.  Analysis Method of Security Critical Components of Industrial Cyber Physical System based on SysML. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :270—275.
To solve the problem of an excessive number of component vulnerabilities and limited defense resources in industrial cyber physical systems, a method for analyzing security critical components of system is proposed. Firstly, the components and vulnerability information in the system are modeled based on SysML block definition diagram. Secondly, as SysML block definition diagram is challenging to support direct analysis, a block security dependency graph model is proposed. On this basis, the transformation rules from SysML block definition graph to block security dependency graph are established according to the structure of block definition graph and its vulnerability information. Then, the calculation method of component security importance is proposed, and a security critical component analysis tool is designed and implemented. Finally, an example of a Drone system is given to illustrate the effectiveness of the proposed method. The application of this method can provide theoretical and technical support for selecting key defense components in the industrial cyber physical system.
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
Sun, Zeyu, Zhang, Chi.  2022.  Research on Relation Extraction of Fusion Entity Enhancement and Shortest Dependency Path based on BERT. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:766—770.
Deep learning models rely on single word features and location features of text to achieve good results in text relation extraction tasks. However, previous studies have failed to make full use of semantic information contained in sentence dependency syntax trees, and data sparseness and noise propagation still affect classification models. The BERT(Bidirectional Encoder Representations from Transformers) pretrained language model provides a better representation of natural language processing tasks. And entity enhancement methods have been proved to be effective in relation extraction tasks. Therefore, this paper proposes a combination of the shortest dependency path and entity-enhanced BERT pre-training language model for model construction to reduce the impact of noise terms on the classification model and obtain more semantically expressive feature representation. The algorithm is tested on SemEval-2010 Task 8 English relation extraction dataset, and the F1 value of the final experiment can reach 0. 881.
Choucri, Nazli, Agarwal, Gaurav.  2022.  Analytics for Cybersecurity Policy of Cyber-Physical Systems. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1—7.
Guidelines, directives, and policy statements are usually presented in “linear” text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like-even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as “data”, transforming text into a structured model, and generate network views of the text(s), that we then can use for vulnerability mapping, risk assessments and note control point analysis. For proof of concept we draw on NIST conceptual model and analysis of guidelines for smart grid cybersecurity, more than 600 pages of text.
Liu, Luchen, Lin, Xixun, Zhang, Peng, Zhang, Lei, Wang, Bin.  2022.  Learning Common Dependency Structure for Unsupervised Cross-Domain Ner. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :8347—8351.
Unsupervised cross-domain NER task aims to solve the issues when data in a new domain are fully-unlabeled. It leverages labeled data from source domain to predict entities in unlabeled target domain. Since training models on large domain corpus is time-consuming, in this paper, we consider an alternative way by introducing syntactic dependency structure. Such information is more accessible and can be shared between sentences from different domains. We propose a novel framework with dependency-aware GNN (DGNN) to learn these common structures from source domain and adapt them to target domain, alleviating the data scarcity issue and bridging the domain gap. Experimental results show that our method outperforms state-of-the-art methods.
2022-07-12
Farrukh, Yasir Ali, Ahmad, Zeeshan, Khan, Irfan, Elavarasan, Rajvikram Madurai.  2021.  A Sequential Supervised Machine Learning Approach for Cyber Attack Detection in a Smart Grid System. 2021 North American Power Symposium (NAPS). :1—6.
Modern smart grid systems are heavily dependent on Information and Communication Technology, and this dependency makes them prone to cyber-attacks. The occurrence of a cyber-attack has increased in recent years resulting in substantial damage to power systems. For a reliable and stable operation, cyber protection, control, and detection techniques are becoming essential. Automated detection of cyberattacks with high accuracy is a challenge. To address this, we propose a two-layer hierarchical machine learning model having an accuracy of 95.44 % to improve the detection of cyberattacks. The first layer of the model is used to distinguish between the two modes of operation - normal state or cyberattack. The second layer is used to classify the state into different types of cyberattacks. The layered approach provides an opportunity for the model to focus its training on the targeted task of the layer, resulting in improvement in model accuracy. To validate the effectiveness of the proposed model, we compared its performance against other recent cyber attack detection models proposed in the literature.
Xu, Zhengwei, Ge, Yuan, Cao, Jin, Yang, Shuquan, Lin, Qiyou, Zhou, Xu.  2021.  Robustness Analysis of Cyber-Physical Power System Based on Adjacent Matrix Evolution. 2021 China Automation Congress (CAC). :2104—2109.
Considering the influence of load, This paper proposes a robust analysis method of cyber-physical power system based on the evolution of adjacency matrix. This method uses the load matrix to detect whether the system has overload failure, utilizes the reachable matrix to detect whether the system has unconnected failure, and uses the dependency matrix to reveal the cascading failure mechanism in the system. Finally, analyze the robustness of the cyber-physical power system. The IEEE30 standard node system is taken as an example for simulation experiment, and introduced the connectivity index and the load loss ratio as evaluation indexes. The robustness of the system is evaluated and analyzed by comparing the variation curves of connectivity index and load loss ratio under different tolerance coefficients. The results show that the proposed method is feasible, reduces the complexity of graph-based attack methods, and easy to research and analyze.
Khanzadi, Pouria, Kordnoori, Shirin, Vasigh, Zahra, Mostafaei, Hamidreza, Akhtarkavan, Ehsan.  2021.  A Cyber Physical System based Stochastic Process Language With NuSMV Model Checker. 2021 International Conference on Intelligent Technology, System and Service for Internet of Everything (ITSS-IoE). :1—8.
Nowadays, cyber physical systems are playing an important role in human life in which they provide features that make interactions between human and machine easier. To design and analysis such systems, the main problem is their complexity. In this paper, we propose a description language for cyber physical systems based on stochastic processes. The proposed language is called SPDL (Stochastic Description Process Language). For designing SPDL, two main parts are considered for Cyber Physical Systems (CSP): embedded systems and physical environment. Then these parts are defined as stochastic processes and CPS is defined as a tuple. Syntax and semantics of SPDL are stated based on the proposed definition. Also, the semantics are defined as by set theory. For implementation of SPDL, dependencies between words of a requirements are extracted as a tree data structure. Based on the dependencies, SPDL is used for describing the CPS. Also, a lexical analyzer and a parser based on a defined BNF grammar for SPDL is designed and implemented. Finally, SPDL of CPS is transformed to NuSMV which is a symbolic model checker. The Experimental results show that SPDL is capable of describing cyber physical systems by natural language.
Akowuah, Francis, Kong, Fanxin.  2021.  Real-Time Adaptive Sensor Attack Detection in Autonomous Cyber-Physical Systems. 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS). :237—250.
Cyber-Physical Systems (CPS) tightly couple information technology with physical processes, which rises new vulnerabilities such as physical attacks that are beyond conventional cyber attacks. Attackers may non-invasively compromise sensors and spoof the controller to perform unsafe actions. This issue is even emphasized with the increasing autonomy in CPS. While this fact has motivated many defense mechanisms against sensor attacks, a clear vision on the timing and usability (or the false alarm rate) of attack detection still remains elusive. Existing works tend to pursue an unachievable goal of minimizing the detection delay and false alarm rate at the same time, while there is a clear trade-off between the two metrics. Instead, we argue that attack detection should bias different metrics when a system sits in different states. For example, if the system is close to unsafe states, reducing the detection delay is preferable to lowering the false alarm rate, and vice versa. To achieve this, we make the following contributions. In this paper, we propose a real-time adaptive sensor attack detection framework. The framework can dynamically adapt the detection delay and false alarm rate so as to meet a detection deadline and improve the usability according to different system status. The core component of this framework is an attack detector that identifies anomalies based on a CUSUM algorithm through monitoring the cumulative sum of difference (or residuals) between the nominal (predicted) and observed sensor values. We augment this algorithm with a drift parameter that can govern the detection delay and false alarm. The second component is a behavior predictor that estimates nominal sensor values fed to the core component for calculating the residuals. The predictor uses a deep learning model that is offline extracted from sensor data through leveraging convolutional neural network (CNN) and recurrent neural network (RNN). The model relies on little knowledge of the system (e.g., dynamics), but uncovers and exploits both the local and complex long-term dependencies in multivariate sequential sensor measurements. The third component is a drift adaptor that estimates a detection deadline and then determines the drift parameter fed to the detector component for adjusting the detection delay and false alarms. Finally, we implement the proposed framework and validate it using realistic sensor data of automotive CPS to demonstrate its efficiency and efficacy.
Patel, Mansi, Prabhu, S Raja, Agrawal, Animesh Kumar.  2021.  Network Traffic Analysis for Real-Time Detection of Cyber Attacks. 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom). :642—646.
Preventing the cyberattacks has been a concern for any organization. In this research, the authors propose a novel method to detect cyberattacks by monitoring and analyzing the network traffic. It was observed that the various log files that are created in the server does not contain all the relevant traces to detect a cyberattack. Hence, the HTTP traffic to the web server was analyzed to detect any potential cyberattacks. To validate the research, a web server was simulated using the Opensource Damn Vulnerable Web Application (DVWA) and the cyberattacks were simulated as per the OWASP standards. A python program was scripted that captured the network traffic to the DVWA server. This traffic was analyzed in real-time by reading the various HTTP parameters viz., URLs, Get / Post methods and the dependencies. The results were found to be encouraging as all the simulated attacks in real-time could be successfully detected. This work can be used as a template by various organizations to prevent any insider threat by monitoring the internal HTTP traffic.
Pelissero, Nicolas, Laso, Pedro Merino, Jacq, Olivier, Puentes, John.  2021.  Towards modeling of naval systems interdependencies for cybersecurity. OCEANS 2021: San Diego – Porto. :1—7.
To ensure a ship’s fully operational status in a wide spectrum of missions, as passenger transportation, international trade, and military activities, numerous interdependent systems are essential. Despite the potential critical consequences of misunderstanding or ignoring those interdependencies, there are very few documented approaches to enable their identification, representation, analysis, and use. From the cybersecurity point of view, if an anomaly occurs on one of the interdependent systems, it could eventually impact the whole ship, jeopardizing its mission success. This paper presents a proposal to identify the main dependencies of layers within and between generic ship’s functional blocks. An analysis of one of these layers, the platform systems, is developed to examine a naval cyber-physical system (CPS), the water management for passenger use, and its associated dependencies, from an intrinsic perspective. This analysis generates a three layers graph, on which dependencies are represented as oriented edges. Each abstraction level of the graph represents the physical, digital, and system variables of the examined CPS. The obtained result confirms the interest of graphs for dependencies representation and analysis. It is an operational depiction of the different systems interdependencies, on which can rely a cybersecurity evaluation, like anomaly detection and propagation assessment.
Pelissero, Nicolas, Laso, Pedro Merino, Puentes, John.  2021.  Model graph generation for naval cyber-physical systems. OCEANS 2021: San Diego – Porto. :1—5.
Naval vessels infrastructures are evolving towards increasingly connected and automatic systems. Such accelerated complexity boost to search for more adapted and useful navigation devices may be at odds with cybersecurity, making necessary to develop adapted analysis solutions for experts. This paper introduces a novel process to visualize and analyze naval Cyber-Physical Systems (CPS) using oriented graphs, considering operational constraints, to represent physical and functional connections between multiple components of CPS. Rapid prototyping of interconnected components is implemented in a semi-automatic manner by defining the CPS’s digital and physical systems as nodes, along with system variables as edges, to form three layers of an oriented graph, using the open-source Neo4j software suit. The generated multi-layer graph can be used to support cybersecurity analysis, like attacks simulation, anomaly detection and propagation estimation, applying existing or new algorithms.
T⊘ndel, Inger Anne, Vefsnmo, Hanne, Gjerde, Oddbj⊘rn, Johannessen, Frode, Fr⊘ystad, Christian.  2021.  Hunting Dependencies: Using Bow-Tie for Combined Analysis of Power and Cyber Security. 2020 2nd International Conference on Societal Automation (SA). :1—8.
Modern electric power systems are complex cyber-physical systems. The integration of traditional power and digital technologies result in interdependencies that need to be considered in risk analysis. In this paper we argue the need for analysis methods that can combine the competencies of various experts in a common analysis focusing on the overall system perspective. We report on our experiences on using the Vulnerability Analysis Framework (VAF) and bow-tie diagrams in a combined analysis of the power and cyber security aspects in a realistic case. Our experiences show that an extended version of VAF with increased support for interdependencies is promising for this type of analysis.
Mbanaso, U. M., Makinde, J. A..  2021.  Conceptual Modelling of Criticality of Critical Infrastructure Nth Order Dependency Effect Using Neural Networks. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :127—131.
This paper presents conceptual modelling of the criticality of critical infrastructure (CI) nth order dependency effect using neural networks. Incidentally, critical infrastructures are usually not stand-alone, they are mostly interconnected in some way thereby creating a complex network of infrastructures that depend on each other. The relationships between these infrastructures can be either unidirectional or bidirectional with possible cascading or escalating effect. Moreover, the dependency relationships can take an nth order, meaning that a failure or disruption in one infrastructure can cascade to nth interconnected infrastructure. The nth-order dependency and criticality problems depict a sequential characteristic, which can result in chronological cyber effects. Consequently, quantifying the criticality of infrastructure demands that the impact of its failure or disruption on other interconnected infrastructures be measured effectively. To understand the complex relational behaviour of nth order relationships between infrastructures, we model the behaviour of nth order dependency using Neural Network (NN) to analyse the degree of dependency and criticality of the dependent infrastructure. The outcome, which is to quantify the Criticality Index Factor (CIF) of a particular infrastructure as a measure of its risk factor can facilitate a collective response in the event of failure or disruption. Using our novel NN approach, a comparative view of CIFs of infrastructures or organisations can provide an efficient mechanism for Critical Information Infrastructure Protection and resilience (CIIPR) in a more coordinated and harmonised way nationally. Our model demonstrates the capability to measure and establish the degree of dependency (or interdependency) and criticality of CIs as a criterion for a proactive CIIPR.
Oikonomou, Nikos, Mengidis, Notis, Spanopoulos-Karalexidis, Minas, Voulgaridis, Antonis, Merialdo, Matteo, Raisr, Ivo, Hanson, Kaarel, de La Vallee, Paloma, Tsikrika, Theodora, Vrochidis, Stefanos et al..  2021.  ECHO Federated Cyber Range: Towards Next-Generation Scalable Cyber Ranges. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :403—408.
Cyber ranges are valuable assets but have limitations in simulating complex realities and multi-sector dependencies; to address this, federated cyber ranges are emerging. This work presents the ECHO Federated Cyber Range, a marketplace for cyber range services, that establishes a mechanism by which independent cyber range capabilities can be interconnected and accessed via a convenient portal. This allows for more complex and complete emulations, spanning potentially multiple sectors and complex exercises. Moreover, it supports a semi-automated approach for processing and deploying service requests to assist customers and providers interfacing with the marketplace. Its features and architecture are described in detail, along with the design, validation and deployment of a training scenario.
2021-02-08
Zhang, J..  2020.  DeepMal: A CNN-LSTM Model for Malware Detection Based on Dynamic Semantic Behaviours. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :313–316.
Malware refers to any software accessing or being installed in a system without the authorisation of administrators. Various malware has been widely used for cyber-criminals to accomplish their evil intentions and goals. To combat the increasing amount and reduce the threat of malicious programs, a novel deep learning framework, which uses NLP techniques for reference, combines CNN and LSTM neurones to capture the locally spatial correlations and learn from sequential longterm dependency is proposed. Hence, high-level abstractions and representations are automatically extracted for the malware classification task. The classification accuracy improves from 0.81 (best one by Random Forest) to approximately 1.0.
Chen, J., Liao, S., Hou, J., Wang, K., Wen, J..  2020.  GST-GCN: A Geographic-Semantic-Temporal Graph Convolutional Network for Context-aware Traffic Flow Prediction on Graph Sequences. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :1604–1609.
Traffic flow prediction is an important foundation for intelligent transportation systems. The traffic data are generated from a traffic network and evolved dynamically. So spatio-temporal relation exploration plays a support role on traffic data analysis. Most researches focus on spatio-temporal information fusion through a convolution operation. To the best of our knowledge, this is the first work to suggest that it is necessary to distinguish the two aspects of spatial correlations and propose the two types of spatial graphs, named as geographic graph and semantic graph. Then two novel stereo convolutions with irregular acceptive fields are proposed. The geographic-semantic-temporal contexts are dynamically jointly captured through performing the proposed convolutions on graph sequences. We propose a geographic-semantic-temporal graph convolutional network (GST-GCN) model that combines our graph convolutions and GRU units hierarchically in a unified end-to-end network. The experiment results on the Caltrans Performance Measurement System (PeMS) dataset show that our proposed model significantly outperforms other popular spatio-temporal deep learning models and suggest the effectiveness to explore geographic-semantic-temporal dependencies on deep learning models for traffic flow prediction.
Haque, M. A., Shetty, S., Kamhoua, C. A., Gold, K..  2020.  Integrating Mission-Centric Impact Assessment to Operational Resiliency in Cyber-Physical Systems. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–7.

Developing mission-centric impact assessment techniques to address cyber resiliency in the cyber-physical systems (CPSs) requires integrating system inter-dependencies to the risk and resilience analysis process. Generally, network administrators utilize attack graphs to estimate possible consequences in a networked environment. Attack graphs lack to incorporate the operations-specific dependencies. Localizing the dependencies among operational missions, tasks, and the hosting devices in a large-scale CPS is also challenging. In this work, we offer a graphical modeling technique to integrate the mission-centric impact assessment of cyberattacks by relating the effect to the operational resiliency by utilizing a combination of the logical attack graph and mission impact propagation graph. We propose formal techniques to compute cyberattacks’ impact on the operational mission and offer an optimization process to minimize the same, having budgetary restrictions. We also relate the effect to the system functional operability. We illustrate our modeling techniques using a SCADA (supervisory control and data acquisition) case study for the cyber-physical power systems. We believe our proposed method would help evaluate and minimize the impact of cyber attacks on CPS’s operational missions and, thus, enhance cyber resiliency.

Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
Wang, Y., Wen, M., Liu, Y., Wang, Y., Li, Z., Wang, C., Yu, H., Cheung, S.-C., Xu, C., Zhu, Z..  2020.  Watchman: Monitoring Dependency Conflicts for Python Library Ecosystem. 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE). :125–135.
The PyPI ecosystem has indexed millions of Python libraries to allow developers to automatically download and install dependencies of their projects based on the specified version constraints. Despite the convenience brought by automation, version constraints in Python projects can easily conflict, resulting in build failures. We refer to such conflicts as Dependency Conflict (DC) issues. Although DC issues are common in Python projects, developers lack tool support to gain a comprehensive knowledge for diagnosing the root causes of these issues. In this paper, we conducted an empirical study on 235 real-world DC issues. We studied the manifestation patterns and fixing strategies of these issues and found several key factors that can lead to DC issues and their regressions. Based on our findings, we designed and implemented Watchman, a technique to continuously monitor dependency conflicts for the PyPI ecosystem. In our evaluation, Watchman analyzed PyPI snapshots between 11 Jul 2019 and 16 Aug 2019, and found 117 potential DC issues. We reported these issues to the developers of the corresponding projects. So far, 63 issues have been confirmed, 38 of which have been quickly fixed by applying our suggested patches.