Biblio
Algorithms for unsupervised anomaly detection have proven their effectiveness and flexibility, however, first it is necessary to calculate with what ratio a certain class begins to be considered anomalous by the autoencoder. For this reason, we propose to conduct a study of the efficiency of autoencoders depending on the ratio of anomalous and non-anomalous classes. The emergence of high-speed networks in electric power systems creates a tight interaction of cyberinfrastructure with the physical infrastructure and makes the power system susceptible to cyber penetration and attacks. To address this problem, this paper proposes an innovative approach to develop a specification-based intrusion detection framework that leverages available information provided by components in a contemporary power system. An autoencoder is used to encode the causal relations among the available information to create patterns with temporal state transitions, which are used as features in the proposed intrusion detection. This allows the proposed method to detect anomalies and cyber attacks.
Digitization has pioneered to drive exceptional changes across all industries in the advancement of analytics, automation, and Artificial Intelligence (AI) and Machine Learning (ML). However, new business requirements associated with the efficiency benefits of digitalization are forcing increased connectivity between IT and OT networks, thereby increasing the attack surface and hence the cyber risk. Cyber threats are on the rise and securing industrial networks are challenging with the shortage of human resource in OT field, with more inclination to IT/OT convergence and the attackers deploy various hi-tech methods to intrude the control systems nowadays. We have developed an innovative real-time ICS cyber test kit to obtain the OT industrial network traffic data with various industrial attack vectors. In this paper, we have introduced the industrial datasets generated from ICS test kit, which incorporate the cyber-physical system of industrial operations. These datasets with a normal baseline along with different industrial hacking scenarios are analyzed for research purposes. Metadata is obtained from Deep packet inspection (DPI) of flow properties of network packets. DPI analysis provides more visibility into the contents of OT traffic based on communication protocols. The advancement in technology has led to the utilization of machine learning/artificial intelligence capability in IDS ICS SCADA. The industrial datasets are pre-processed, profiled and the abnormality is analyzed with DPI. The processed metadata is normalized for the easiness of algorithm analysis and modelled with machine learning-based latest deep learning ensemble LSTM algorithms for anomaly detection. The deep learning approach has been used nowadays for enhanced OT IDS performances.
The age of the wireless network already advances to the fifth generation (5G) era. With software-defined networking (SDN) and network function virtualization (NFV), various scenarios can be implemented in the 5G network. Cloud computing, for example, is one of the important application scenarios for implementing SDN/NFV solutions. The emerging container technologies, such as Docker, can provide more agile service provisioning than virtual machines can do in cloud environments. It is a trend that virtual network functions (VNFs) tend to be deployed in the form of containers. The services provided by clouds can be formed by service function chaining (SFC) consisting of containerized VNFs. Nevertheless, the challenges and limitation regarding SFCs are reported in the literature. Various network services are bound to rely heavily on these novel technologies, however, the development of related technologies often emphasizes functions and ignores security issues. One noticeable issue is the SFC integrity. In brief, SFC integrity concerns whether the paths that traffic flows really pass by and the ones of service chains that are predefined are consistent. In order to examine SFC integrity in the cloud-native environment of 5G network, we propose a framework that can be integrated with NFV management and orchestration (MANO) in this work. The core of this framework is the anomaly detection mechanism for SFC integrity. The learning algorithm of our mechanism is based on extreme learning machine (ELM). The proposed mechanism is evaluated by its performance such as the accuracy of our ELM model. This paper concludes with discussions and future research work.
Industrial control systems (ICSs) are used in various infrastructures and industrial plants for realizing their control operation and ensuring their safety. Concerns about the cybersecurity of industrial control systems have raised due to the increased number of cyber-attack incidents on critical infrastructures in the light of the advancement in the cyber activity of ICSs. Nevertheless, the operation of the industrial control systems is bind to vital aspects in life, which are safety, economy, and security. This paper presents a semi-supervised, hybrid attack detection approach for industrial control systems by combining Isolation Forest and Convolutional Neural Network (CNN) models. The proposed framework is developed using the normal operational data, and it is composed of a feature extraction model implemented using a One-Dimensional Convolutional Neural Network (1D-CNN) and an isolation forest model for the detection. The two models are trained independently such that the feature extraction model aims to extract useful features from the continuous-time signals that are then used along with the binary actuator signals to train the isolation forest-based detection model. The proposed approach is applied to a down-scaled industrial control system, which is a water treatment plant known as the Secure Water Treatment (SWaT) testbed. The performance of the proposed method is compared with the other works using the same testbed, and it shows an improvement in terms of the detection capability.
This paper examines multiple machine learning models to find the model that best indicates anomalous activity in an industrial control system that is under a software-based attack. The researched machine learning models are Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Recurrent Neural Network classifiers built-in Python and tested against the HIL-based Augmented ICS dataset. Although the results showed that Random Forest, Gradient Boosting Machine, Artificial Neural Network, and Long Short-Term Memory classification models have great potential for anomaly detection in industrial control systems, we found that Random Forest with tuned hyperparameters slightly outperformed the other models.
Deep learning methods are increasingly becoming solutions to complex problems, including the search for anomalies. While fully-connected and convolutional neural networks have already found their application in classification problems, their applicability to the problem of detecting anomalies is limited. In this regard, it is proposed to use autoencoders, previously used only in problems of reducing the dimension and removing noise, as a method for detecting anomalies in the industrial control system. A new method based on autoencoders is proposed for detecting anomalies in the operation of industrial control systems (ICS). Several neural networks based on auto-encoders with different architectures were trained, and the effectiveness of each of them in the problem of detecting anomalies in the work of process control systems was evaluated. Auto-encoders can detect the most complex and non-linear dependencies in the data, and as a result, can show the best quality for detecting anomalies. In some cases, auto-encoders require fewer machine resources.
In recent years, artificial intelligence has been widely used in the field of network security, which has significantly improved the effect of network security analysis and detection. However, because the power industrial control system is faced with the problem of shortage of attack data, the direct deployment of the network intrusion detection system based on artificial intelligence is faced with the problems of lack of data, low precision, and high false alarm rate. To solve this problem, we propose an anomaly traffic detection method based on cross-domain knowledge transferring. By using the TrAdaBoost algorithm, we achieve a lower error rate than using LSTM alone.