Visible to the public Biblio

Filters: Keyword is evolutionary computation  [Clear All Filters]
2022-08-10
Zhan, Zhi-Hui, Wu, Sheng-Hao, Zhang, Jun.  2021.  A New Evolutionary Computation Framework for Privacy-Preserving Optimization. 2021 13th International Conference on Advanced Computational Intelligence (ICACI). :220—226.
Evolutionary computation (EC) is a kind of advanced computational intelligence (CI) algorithm and advanced artificial intelligence (AI) algorithm. EC algorithms have been widely studied for solving optimization and scheduling problems in various real-world applications, which act as one of the Big Three in CI and AI, together with fuzzy systems and neural networks. Even though EC has been fast developed in recent years, there is an assumption that the algorithm designer can obtain the objective function of the optimization problem so that they can calculate the fitness values of the individuals to follow the “survival of the fittest” principle in natural selection. However, in a real-world application scenario, there is a kind of problem that the objective function is privacy so that the algorithm designer can not obtain the fitness values of the individuals directly. This is the privacy-preserving optimization problem (PPOP) where the assumption of available objective function does not check out. How to solve the PPOP is a new emerging frontier with seldom study but is also a challenging research topic in the EC community. This paper proposes a rank-based cryptographic function (RCF) to protect the fitness value information. Especially, the RCF is adopted by the algorithm user to encrypt the fitness values of all the individuals as rank so that the algorithm designer does not know the exact fitness information but only the rank information. Nevertheless, the RCF can protect the privacy of the algorithm user but still can provide sufficient information to the algorithm designer to drive the EC algorithm. We have applied the RCF privacy-preserving method to two typical EC algorithms including particle swarm optimization (PSO) and differential evolution (DE). Experimental results show that the RCF-based privacy-preserving PSO and DE can solve the PPOP without performance loss.
2021-12-22
Renda, Alessandro, Ducange, Pietro, Gallo, Gionatan, Marcelloni, Francesco.  2021.  XAI Models for Quality of Experience Prediction in Wireless Networks. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–6.
Explainable Artificial Intelligence (XAI) is expected to play a key role in the design phase of next generation cellular networks. As 5G is being implemented and 6G is just in the conceptualization stage, it is increasingly clear that AI will be essential to manage the ever-growing complexity of the network. However, AI models will not only be required to deliver high levels of performance, but also high levels of explainability. In this paper we show how fuzzy models may be well suited to address this challenge. We compare fuzzy and classical decision tree models with a Random Forest (RF) classifier on a Quality of Experience classification dataset. The comparison suggests that, in our setting, fuzzy decision trees are easier to interpret and perform comparably or even better than classical ones in identifying stall events in a video streaming application. The accuracy drop with respect to RF classifier, which is considered to be a black-box ensemble model, is counterbalanced by a significant gain in terms of explainability.
2021-12-21
Maliszewski, Michal, Boryczka, Urszula.  2021.  Using MajorClust Algorithm for Sandbox-Based ATM Security. 2021 IEEE Congress on Evolutionary Computation (CEC). :1054–1061.
Automated teller machines are affected by two kinds of attacks: physical and logical. It is common for most banks to look for zero-day protection for their devices. The most secure solutions available are based on complex security policies that are extremely hard to configure. The goal of this article is to present a concept of using the modified MajorClust algorithm for generating a sandbox-based security policy based on ATM usage data. The results obtained from the research prove the effectiveness of the used techniques and confirm that it is possible to create a division into sandboxes in an automated way.
2021-03-29
Grochol, D., Sekanina, L..  2020.  Evolutionary Design of Hash Functions for IPv6 Network Flow Hashing. 2020 IEEE Congress on Evolutionary Computation (CEC). :1–8.
Fast and high-quality network flow hashing is an essential operation in many high-speed network systems such as network monitoring probes. We propose a multi-objective evolutionary design method capable of evolving hash functions for IPv4 and IPv6 flow hashing. Our approach combines Cartesian genetic programming (CGP) with Non-dominated sorting genetic algorithm II (NSGA-II) and aims to optimize not only the quality of hashing, but also the execution time of the hash function. The evolved hash functions are evaluated on real data sets collected in computer network and compared against other evolved and conventionally created hash functions.
2021-03-09
Murali, R., Velayutham, C. S..  2020.  A Conceptual Direction on Automatically Evolving Computer Malware using Genetic and Evolutionary Algorithms. 2020 International Conference on Inventive Computation Technologies (ICICT). :226—229.

The widespread use of computing devices and the heavy dependence on the internet has evolved the cyberspace to a cyber world - something comparable to an artificial world. This paper focuses on one of the major problems of the cyber world - cyber security or more specifically computer malware. We show that computer malware is a perfect example of an artificial ecosystem with a co-evolutionary predator-prey framework. We attempt to merge the two domains of biologically inspired computing and computer malware. Under the aegis of proactive defense, this paper discusses the possibilities, challenges and opportunities in fusing evolutionary computing techniques with malware creation.

2020-12-14
Xu, S., Ouyang, Z., Feng, J..  2020.  An Improved Multi-objective Particle Swarm Optimization. 2020 5th International Conference on Computational Intelligence and Applications (ICCIA). :19–23.
For solving multi-objective optimization problems, this paper firstly combines a multi-objective evolutionary algorithm based on decomposition (MOEA/D) with good convergence and non-dominated sorting genetic algorithm II (NSGA-II) with good distribution to construct. Thus we propose a hybrid multi-objective optimization solving algorithm. Then, we consider that the population diversity needs to be improved while applying multi-objective particle swarm optimization (MOPSO) to solve the multi-objective optimization problems and an improved MOPSO algorithm is proposed. We give the distance function between the individual and the population, and the individual with the largest distance is selected as the global optimal individual to maintain population diversity. Finally, the simulation experiments are performed on the ZDT\textbackslashtextbackslashDTLZ test functions and track planning problems. The results indicate the better performance of the improved algorithms.
2020-10-26
Leach, Kevin, Dougherty, Ryan, Spensky, Chad, Forrest, Stephanie, Weimer, Westley.  2019.  Evolutionary Computation for Improving Malware Analysis. 2019 IEEE/ACM International Workshop on Genetic Improvement (GI). :18–19.
Research in genetic improvement (GI) conventionally focuses on the improvement of software, including the automated repair of bugs and vulnerabilities as well as the refinement of software to increase performance. Eliminating or reducing vulnerabilities using GI has improved the security of benign software, but the growing volume and complexity of malicious software necessitates better analysis techniques that may benefit from a GI-based approach. Rather than focus on the use of GI to improve individual software artifacts, we believe GI can be applied to the tools used to analyze malicious code for its behavior. First, malware analysis is critical to understanding the damage caused by an attacker, which GI-based bug repair does not currently address. Second, modern malware samples leverage complex vectors for infection that cannot currently be addressed by GI. In this paper, we discuss an application of genetic improvement to the realm of automated malware analysis through the use of variable-strength covering arrays.
2020-10-06
Drozd, Oleksandr, Kharchenko, Vyacheslav, Rucinski, Andrzej, Kochanski, Thaddeus, Garbos, Raymond, Maevsky, Dmitry.  2019.  Development of Models in Resilient Computing. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). :1—6.

The article analyzes the concept of "Resilience" in relation to the development of computing. The strategy for reacting to perturbations in this process can be based either on "harsh Resistance" or "smarter Elasticity." Our "Models" are descriptive in defining the path of evolutionary development as structuring under the perturbations of the natural order and enable the analysis of the relationship among models, structures and factors of evolution. Among those, two features are critical: parallelism and "fuzziness", which to a large extent determine the rate of change of computing development, especially in critical applications. Both reversible and irreversible development processes related to elastic and resistant methods of problem solving are discussed. The sources of perturbations are located in vicinity of the resource boundaries, related to growing problem size with progress combined with the lack of computational "checkability" of resources i.e. data with inadequate models, methodologies and means. As a case study, the problem of hidden faults caused by the growth, the deficit of resources, and the checkability of digital circuits in critical applications is analyzed.

2020-05-18
Yang, Xiaoliu, Li, Zetao, Zhang, Fabin.  2018.  Simultaneous diagnosis of multiple parametric faults based on differential evolution algorithm. 2018 Chinese Control And Decision Conference (CCDC). :2781–2786.
This paper addresses analysis and design of multiple fault diagnosis for a class of Lipschitz nonlinear system. In order to automatically estimate multi-fault parameters efficiently, a new method of multi-fault diagnosis based on the differential evolution algorithm (DE) is proposed. Finally, a series of experiments validate the feasibility and effectiveness of the proposed method. The simulation show the high accuracy of the proposed strategies in multiple abrupt faults diagnosis.
2020-05-08
Zhang, Xu, Ye, Zhiwei, Yan, Lingyu, Wang, Chunzhi, Wang, Ruoxi.  2018.  Security Situation Prediction based on Hybrid Rice Optimization Algorithm and Back Propagation Neural Network. 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS-SWS). :73—77.
Research on network security situation awareness is currently a research hotspot in the field of network security. It is one of the easiest and most effective methods to use the BP neural network for security situation prediction. However, there are still some problems in BP neural network, such as slow convergence rate, easy to fall into local extremum, etc. On the other hand, some common used evolutionary algorithms, such as genetic algorithm (GA) and particle swarm optimization (PSO), easily fall into local optimum. Hybrid rice optimization algorithm is a newly proposed algorithm with strong search ability, so the method of this paper is proposed. This article describes in detail the use of BP network security posture prediction method. In the proposed method, HRO is used to train the connection weights of the BP network. Through the advantages of HRO global search and fast convergence, the future security situation of the network is predicted, and the accuracy of the situation prediction is effectively improved.
2020-04-24
Jiang, He, Wang, Zhenhua, He, Haibo.  2019.  An Evolutionary Computation Approach for Smart Grid Cascading Failure Vulnerability Analysis. 2019 IEEE Symposium Series on Computational Intelligence (SSCI). :332—338.
The cyber-physical security of smart grid is of great importance since it directly concerns the normal operating of a system. Recently, researchers found that organized sequential attacks can incur large-scale cascading failure to the smart grid. In this paper, we focus on the line-switching sequential attack, where the attacker aims to trip transmission lines in a designed order to cause significant system failures. Our objective is to identify the critical line-switching attack sequence, which can be instructional for the protection of smart grid. For this purpose, we develop an evolutionary computation based vulnerability analysis framework, which employs particle swarm optimization to search the critical attack sequence. Simulation studies on two benchmark systems, i.e., IEEE 24 bus reliability test system and Washington 30 bus dynamic test system, are implemented to evaluate the performance of our proposed method. Simulation results show that our method can yield a better performance comparing with the reinforcement learning based approach proposed in other prior work.
2020-02-17
Halabi, Talal, Bellaiche, Martine.  2019.  Security Risk-Aware Resource Provisioning Scheme for Cloud Computing Infrastructures. 2019 IEEE Conference on Communications and Network Security (CNS). :1–9.

The last decade has witnessed a growing interest in exploiting the advantages of Cloud Computing technology. However, the full migration of services and data to the Cloud is still cautious due to the lack of security assurance. Cloud Service Providers (CSPs)are urged to exert the necessary efforts to boost their reputation and improve their trustworthiness. Nevertheless, the uniform implementation of advanced security solutions across all their data centers is not the ideal solution, since customers' security requirements are usually not monolithic. In this paper, we aim at integrating the Cloud security risk into the process of resource provisioning to increase the security of Cloud data centers. First, we propose a quantitative security risk evaluation approach based on the definition of distinct security metrics and configurations adapted to the Cloud Computing environment. Then, the evaluated security risk levels are incorporated into a resource provisioning model in an InterCloud setting. Finally, we adopt two different metaheuristics approaches from the family of evolutionary computation to solve the security risk-aware resource provisioning problem. Simulations show that our model reduces the security risk within the Cloud infrastructure and demonstrate the efficiency and scalability of proposed solutions.

2020-01-27
Tuba, Eva, Jovanovic, Raka, Zivkovic, Dejan, Beko, Marko, Tuba, Milan.  2019.  Clustering Algorithm Optimized by Brain Storm Optimization for Digital Image Segmentation. 2019 7th International Symposium on Digital Forensics and Security (ISDFS). :1–6.
In the last several decades digital images were extend their usage in numerous areas. Due to various digital image processing methods they became part areas such as astronomy, agriculture and more. One of the main task in image processing application is segmentation. Since segmentation represents rather important problem, various methods were proposed in the past. One of the methods is to use clustering algorithms which is explored in this paper. We propose k-means algorithm for digital image segmentation. K-means algorithm's well known drawback is the high possibility of getting trapped into local optima. In this paper we proposed brain storm optimization algorithm for optimizing k-means algorithm used for digital image segmentation. Our proposed algorithm is tested on several benchmark images and the results are compared with other stat-of-the-art algorithms. The proposed method outperformed the existing methods.
2019-12-09
Cococcioni, Marco.  2018.  Computational Intelligence in Maritime Security and Defense: Challenges and Opportunities. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1964-1967.

Computational Intelligence (CI) has a great potential in Security & Defense (S&D) applications. Nevertheless, such potential seems to be still under exploited. In this work we first review CI applications in the maritime domain, done in the past decades by NATO Nations. Then we discuss challenges and opportunities for CI in S&D. Finally we argue that a review of the academic training of military officers is highly recommendable, in order to allow them to understand, model and solve new problems, using CI techniques.

2019-11-04
Tufail, Hina, Zafar, Kashif, Baig, Rauf.  2018.  Digital Watermarking for Relational Database Security Using mRMR Based Binary Bat Algorithm. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :1948–1954.
Publically available relational data without security protection may cause data protection issues. Watermarking facilitates solution for remote sharing of relational database by ensuring data integrity and security. In this research, a reversible watermarking for numerical relational database by using evolutionary technique has been proposed that ensure the integrity of underlying data and robustness of watermark. Moreover, mRMR based feature subset selection technique has been used to select attributes for implementation of watermark instead of watermarking whole database. Binary Bat algorithm has been used as constraints optimization technique for watermark creation. Experimental results have shown the effectiveness of the proposed technique against data tempering attacks. In case of alteration attacks, almost 70% data has been recovered, 50% in deletion attacks and 100% data is retrieved after insertion attacks. The watermarking based on evolutionary technique (WET) i.e., mRMR based Binary Bat Algorithm ensures the data accuracy and it is resilient against malicious attacks.
2019-01-21
Feng, S., Xiong, Z., Niyato, D., Wang, P., Leshem, A..  2018.  Evolving Risk Management Against Advanced Persistent Threats in Fog Computing. 2018 IEEE 7th International Conference on Cloud Networking (CloudNet). :1–6.
With the capability of support mobile computing demand with small delay, fog computing has gained tremendous popularity. Nevertheless, its highly virtualized environment is vulnerable to cyber attacks such as emerging Advanced Persistent Threats attack. In this paper, we propose a novel approach of cyber risk management for the fog computing platform. Particularly, we adopt the cyber-insurance as a tool for neutralizing cyber risks from fog computing platform. We consider a fog computing platform containing a group of fog nodes. The platform is composed of three main entities, i.e., the fog computing provider, attacker, and cyber-insurer. The fog computing provider dynamically optimizes the allocation of its defense computing resources to improve the security of the fog computing platform. Meanwhile, the attacker dynamically adjusts the allocation of its attack resources to improve the probability of successful attack. Additionally, to prevent from the potential loss due to attacks, the provider also makes a dynamic decision on the purchases ratio of cyber-insurance from the cyber-insurer for each fog node. Thereafter, the cyber-insurer accordingly determines the premium of cyber-insurance for each fog node. In our formulated dynamic Stackelberg game, the attacker and provider act as the followers, and the cyber-insurer acts as the leader. In the lower level, we formulate an evolutionary subgame to analyze the provider's defense and cyber-insurance subscription strategies as well as the attacker's attack strategy. In the upper level, the cyber-insurer optimizes its premium determination strategy, taking into account the evolutionary equilibrium at the lower-level evolutionary subgame. We analytically prove that the evolutionary equilibrium is unique and stable. Moreover, we provide a series of insightful analytical and numerical results on the equilibrium of the dynamic Stackelberg game.
2018-02-15
Sheppard, J. W., Strasser, S..  2017.  A factored evolutionary optimization approach to Bayesian abductive inference for multiple-fault diagnosis. 2017 IEEE AUTOTESTCON. :1–10.

When supporting commercial or defense systems, a perennial challenge is providing effective test and diagnosis strategies to minimize downtime, thereby maximizing system availability. Potentially one of the most effective ways to maximize downtime is to be able to detect and isolate as many faults in a system at one time as possible. This is referred to as the "multiple-fault diagnosis" problem. While several tools have been developed over the years to assist in performing multiple-fault diagnosis, considerable work remains to provide the best diagnosis possible. Recently, a new model for evolutionary computation has been developed called the "Factored Evolutionary Algorithm" (FEA). In this paper, we combine our prior work in deriving diagnostic Bayesian networks from static fault isolation manuals and fault trees with the FEA strategy to perform abductive inference as a way of addressing the multiple-fault diagnosis problem. We demonstrate the effectiveness of this approach on several networks derived from existing, real-world FIMs.

2017-03-08
Li, Xiao-Ke, Gu, Chun-Hua, Yang, Ze-Ping, Chang, Yao-Hui.  2015.  Virtual machine placement strategy based on discrete firefly algorithm in cloud environments. 2015 12th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :61–66.

Because of poor performance of heuristic algorithms on virtual machine placement problem in cloud environments, a multi-objective constraint optimization model of virtual machine placement is presented, which taking energy consumption and resource wastage as the objective. We solve the model based on the proposed discrete firefly algorithm. It takes firefly's location as the placement result, brightness as the objective value. Its movement strategy makes darker fireflies move to brighter fireflies in solution space. The continuous position after movement is discretized by the proposed discrete strategy. In order to speed up the search for solution, the local search mechanism for the optimal solution is introduced. The experimental results in OpenStack cloud platform show that the proposed algorithm makes less energy consumption and resource wastage compared with other algorithms.

2017-03-07
Tosh, D., Sengupta, S., Kamhoua, C., Kwiat, K., Martin, A..  2015.  An evolutionary game-theoretic framework for cyber-threat information sharing. 2015 IEEE International Conference on Communications (ICC). :7341–7346.

The initiative to protect against future cyber crimes requires a collaborative effort from all types of agencies spanning industry, academia, federal institutions, and military agencies. Therefore, a Cybersecurity Information Exchange (CYBEX) framework is required to facilitate breach/patch related information sharing among the participants (firms) to combat cyber attacks. In this paper, we formulate a non-cooperative cybersecurity information sharing game that can guide: (i) the firms (players)1 to independently decide whether to “participate in CYBEX and share” or not; (ii) the CYBEX framework to utilize the participation cost dynamically as incentive (to attract firms toward self-enforced sharing) and as a charge (to increase revenue). We analyze the game from an evolutionary game-theoretic strategy and determine the conditions under which the players' self-enforced evolutionary stability can be achieved. We present a distributed learning heuristic to attain the evolutionary stable strategy (ESS) under various conditions. We also show how CYBEX can wisely vary its pricing for participation to increase sharing as well as its own revenue, eventually evolving toward a win-win situation.

2015-04-30
Xiao-Bing Hu, Ming Wang, Leeson, M.S..  2014.  Calculating the complete pareto front for a special class of continuous multi-objective optimization problems. Evolutionary Computation (CEC), 2014 IEEE Congress on. :290-297.

Existing methods for multi-objective optimization usually provide only an approximation of a Pareto front, and there is little theoretical guarantee of finding the real Pareto front. This paper is concerned with the possibility of fully determining the true Pareto front for those continuous multi-objective optimization problems for which there are a finite number of local optima in terms of each single objective function and there is an effective method to find all such local optima. To this end, some generalized theoretical conditions are firstly given to guarantee a complete cover of the actual Pareto front for both discrete and continuous problems. Then based on such conditions, an effective search procedure inspired by the rising sea level phenomenon is proposed particularly for continuous problems of the concerned class. Even for general continuous problems to which not all local optima are available, the new method may still work well to approximate the true Pareto front. The good practicability of the proposed method is especially underpinned by multi-optima evolutionary algorithms. The advantages of the proposed method in terms of both solution quality and computational efficiency are illustrated by the simulation results.

Yexing Li, Xinye Cai, Zhun Fan, Qingfu Zhang.  2014.  An external archive guided multiobjective evolutionary approach based on decomposition for continuous optimization. Evolutionary Computation (CEC), 2014 IEEE Congress on. :1124-1130.

In this paper, we propose a decomposition based multiobjective evolutionary algorithm that extracts information from an external archive to guide the evolutionary search for continuous optimization problem. The proposed algorithm used a mechanism to identify the promising regions(subproblems) through learning information from the external archive to guide evolutionary search process. In order to demonstrate the performance of the algorithm, we conduct experiments to compare it with other decomposition based approaches. The results validate that our proposed algorithm is very competitive.