Visible to the public Biblio

Found 113 results

Filters: Keyword is Benchmark testing  [Clear All Filters]
2022-08-26
Ganguli, Mrittika, Ranganath, Sunku, Ravisundar, Subhiksha, Layek, Abhirupa, Ilangovan, Dakshina, Verplanke, Edwin.  2021.  Challenges and Opportunities in Performance Benchmarking of Service Mesh for the Edge. 2021 IEEE International Conference on Edge Computing (EDGE). :78—85.
As Edge deployments move closer towards the end devices, low latency communication among Edge aware applications is one of the key tenants of Edge service offerings. In order to simplify application development, service mesh architectures have emerged as the evolutionary architectural paradigms for taking care of bulk of application communication logic such as health checks, circuit breaking, secure communication, resiliency (among others), thereby decoupling application logic with communication infrastructure. The latency to throughput ratio needs to be measurable for high performant deployments at the Edge. Providing benchmark data for various edge deployments with Bare Metal and virtual machine-based scenarios, this paper digs into architectural complexities of deploying service mesh at edge environment, performance impact across north-south and east-west communications in and out of a service mesh leveraging popular open-source service mesh Istio/Envoy using a simple on-prem Kubernetes cluster. The performance results shared indicate performance impact of Kubernetes network stack with Envoy data plane. Microarchitecture analyses indicate bottlenecks in Linux based stacks from a CPU micro-architecture perspective and quantify the high impact of Linux's Iptables rule matching at scale. We conclude with the challenges in multiple areas of profiling and benchmarking requirement and a call to action for deploying a service mesh, in latency sensitive environments at Edge.
2022-08-12
Bendre, Nihar, Desai, Kevin, Najafirad, Peyman.  2021.  Show Why the Answer is Correct! Towards Explainable AI using Compositional Temporal Attention. 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :3006–3012.
Visual Question Answering (VQA) models have achieved significant success in recent times. Despite the success of VQA models, they are mostly black-box models providing no reasoning about the predicted answer, thus raising questions for their applicability in safety-critical such as autonomous systems and cyber-security. Current state of the art fail to better complex questions and thus are unable to exploit compositionality. To minimize the black-box effect of these models and also to make them better exploit compositionality, we propose a Dynamic Neural Network (DMN), which can understand a particular question and then dynamically assemble various relatively shallow deep learning modules from a pool of modules to form a network. We incorporate compositional temporal attention to these deep learning based modules to increase compositionality exploitation. This results in achieving better understanding of complex questions and also provides reasoning as to why the module predicts a particular answer. Experimental analysis on the two benchmark datasets, VQA2.0 and CLEVR, depicts that our model outperforms the previous approaches for Visual Question Answering task as well as provides better reasoning, thus making it reliable for mission critical applications like safety and security.
2022-07-29
Saxena, Nikhil, Narayanan, Ram Venkat, Meka, Juneet Kumar, Vemuri, Ranga.  2021.  SRTLock: A Sensitivity Resilient Two-Tier Logic Encryption Scheme. 2021 IEEE International Symposium on Smart Electronic Systems (iSES). :389—394.
Logic encryption is a method to improve hardware security by inserting key gates on carefully selected signals in a logic design. Various logic encryption schemes have been proposed in the past decade. Many attack methods to thwart these logic locking schemes have also emerged. The satisfiability (SAT) attack can recover correct keys for many logic obfuscation methods. Recently proposed sensitivity analysis attack can decrypt stripped functionality based logic encryption schemes. This article presents a new encryption scheme named SRTLock, which is resilient against both attacks. SRTLock method first generates 0-injection circuits and encrypts the functionality of these nodes with the key inputs. In the next step, these values are used to control the sensitivity of the functionally stripped output for specific input patterns. The resultant locked circuit is resilient against the SAT and sensitivity analysis attacks. Experimental results demonstrating this on several attacks using standard benchmark circuits are presented.
Luo, Weifeng, Xiao, Liang.  2021.  Reinforcement Learning Based Vulnerability Analysis of Data Injection Attack for Smart Grids. 2021 40th Chinese Control Conference (CCC). :6788—6792.
Smart grids have to protect meter measurements against false data injection attacks. By modifying the meter measurements, the attacker misleads the control decisions of the control center, which results in physical damages of power systems. In this paper, we propose a reinforcement learning based vulnerability analysis scheme for data injection attack without relying on the power system topology. This scheme enables the attacker to choose the data injection attack vector based on the meter measurements, the power system status, the previous injected errors and the number of meters to compromise. By combining deep reinforcement learning with prioritized experience replay, the proposed scheme more frequently replays the successful vulnerability detection experiences while bypassing the bad data detection, which is able to accelerate the learning speed. Simulation results based on the IEEE 14 bus system show that this scheme increases the probability of successful vulnerability detection and reduce the number of meters to compromise compared with the benchmark scheme.
2022-07-14
Kuang, Randy, Barbeau, Michel.  2021.  Performance Analysis of the Quantum Safe Multivariate Polynomial Public Key Algorithm. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE). :351—358.
The Multivariate Polynomial Public Key (MPPK) algorithm, over a prime Galois field, takes a multiplier multivariate polynomial and two multiplicand univariate solvable polynomials to create two product multivariate polynomials. One of variables is for secret message and all others are for noises. The public key consists of all coefficients of the product multivariate polynomials, except the two constant terms for the message variable. The private key is made of both multiplicands. Encryption takes a list of random numbers, over the prime Galois field. The first number is the secret to exchange. The other random numbers generate noise automatically cancelled by decryption. The secret is easily extracted from the evaluation of a solvable equation. The level of security provided by MPPK is adaptable. The algorithm can be used in several different ways. In this paper, we review the performance achieved by MPPK for several combinations of polynomial configurations and Galois field sizes. For every combination, we calculated key generation time, encryption time and decryption time. We also compare the effectiveness of MPPK with the performance of all four NIST PQC finalists. For MPPK, the data has been collected from the execution of an implementation in Java. In comparison to the NIST PQC finalists, MPPK key generation, encryption and decryption performance is excellent.
2022-07-12
Lachtar, Nada, Elkhail, Abdulrahman Abu, Bacha, Anys, Malik, Hafiz.  2021.  An Application Agnostic Defense Against the Dark Arts of Cryptojacking. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :314—325.
The popularity of cryptocurrencies has garnered interest from cybercriminals, spurring an onslaught of cryptojacking campaigns that aim to hijack computational resources for the purpose of mining cryptocurrencies. In this paper, we present a cross-stack cryptojacking defense system that spans the hardware and OS layers. Unlike prior work that is confined to detecting cryptojacking behavior within web browsers, our solution is application agnostic. We show that tracking instructions that are frequently used in cryptographic hash functions serve as reliable signatures for fingerprinting cryptojacking activity. We demonstrate that our solution is resilient to multi-threaded and throttling evasion techniques that are commonly employed by cryptojacking malware. We characterize the robustness of our solution by extensively testing a diverse set of workloads that include real consumer applications. Finally, an evaluation of our proof-of-concept implementation shows minimal performance impact while running a mix of benchmark applications.
2022-06-09
Fu, Chen, Rui, Yu, Wen-mao, Liu.  2021.  Internet of Things Attack Group Identification Model Combined with Spectral Clustering. 2021 IEEE 21st International Conference on Communication Technology (ICCT). :778–782.
In order to solve the problem that the ordinary intrusion detection model cannot effectively identify the increasingly complex, continuous, multi-source and organized network attacks, this paper proposes an Internet of Things attack group identification model to identify the planned and organized attack groups. The model takes the common attack source IP, target IP, time stamp and target port as the characteristics of the attack log data to establish the identification benchmark of the attack gang behavior. The model also combines the spectral clustering algorithm to cluster different attackers with similar attack behaviors, and carries out the specific image analysis of the attack gang. In this paper, an experimental detection was carried out based on real IoT honey pot attack log data. The spectral clustering was compared with Kmeans, DBSCAN and other clustering algorithms. The experimental results shows that the contour coefficient of spectral clustering was significantly higher than that of other clustering algorithms. The recognition model based on spectral clustering proposed in this paper has a better effect, which can effectively identify the attack groups and mine the attack preferences of the groups.
2022-06-07
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
2022-05-19
Zhang, Xueling, Wang, Xiaoyin, Slavin, Rocky, Niu, Jianwei.  2021.  ConDySTA: Context-Aware Dynamic Supplement to Static Taint Analysis. 2021 IEEE Symposium on Security and Privacy (SP). :796–812.
Static taint analyses are widely-applied techniques to detect taint flows in software systems. Although they are theoretically conservative and de-signed to detect all possible taint flows, static taint analyses almost always exhibit false negatives due to a variety of implementation limitations. Dynamic programming language features, inaccessible code, and the usage of multiple programming languages in a software project are some of the major causes. To alleviate this problem, we developed a novel approach, DySTA, which uses dynamic taint analysis results as additional sources for static taint analysis. However, naïvely adding sources causes static analysis to lose context sensitivity and thus produce false positives. Thus, we developed a hybrid context matching algorithm and corresponding tool, ConDySTA, to preserve context sensitivity in DySTA. We applied REPRODROID [1], a comprehensive benchmarking framework for Android analysis tools, to evaluate ConDySTA. The results show that across 28 apps (1) ConDySTA was able to detect 12 out of 28 taint flows which were not detected by any of the six state-of-the-art static taint analyses considered in ReproDroid, and (2) ConDySTA reported no false positives, whereas nine were reported by DySTA alone. We further applied ConDySTA and FlowDroid to 100 top Android apps from Google Play, and ConDySTA was able to detect 39 additional taint flows (besides 281 taint flows found by FlowDroid) while preserving the context sensitivity of FlowDroid.
Su, Yu, Shen, Haihua, Lu, Renjie, Ye, Yunying.  2021.  A Stealthy Hardware Trojan Design and Corresponding Detection Method. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). :1–6.
For the purpose of stealthiness, trigger-based Hardware Trojans(HTs) tend to have at least one trigger signal with an extremely low transition probability to evade the functional verification. In this paper, we discuss the correlation between poor testability and low transition probability, and then propose a kind of systematic Trojan trigger model with extremely low transition probability but reasonable testability, which can disable the Controllability and Observability for hardware Trojan Detection (COTD) technique, an efficient HT detection method based on circuits testability. Based on experiments and tests on circuits, we propose that the more imbalanced 0/1-controllability can indicate the lower transition probability. And a trigger signal identification method using the imbalanced 0/1-controllability is proposed. Experiments on ISCAS benchmarks show that the proposed method can obtain a 100% true positive rate and average 5.67% false positive rate for the trigger signal.
Ponugoti, Kushal K., Srinivasan, Sudarshan K., Mathure, Nimish.  2021.  Formal Verification Approach to Detect Always-On Denial of Service Trojans in Pipelined Circuits. 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS). :1–6.
Always-On Denial of Service (DoS) Trojans with power drain payload can be disastrous in systems where on-chip power resources are limited. These Trojans are designed so that they have no impact on system behavior and hence, harder to detect. A formal verification method is presented to detect sequential always-on DoS Trojans in pipelined circuits and pipelined microprocessors. Since the method is proof-based, it provides a 100% accurate classification of sequential Trojan components. Another benefit of the approach is that it does not require a reference model, which is one of the requirements of many Trojan detection techniques (often a bottleneck to practical application). The efficiency and scalability of the proposed method have been evaluated on 36 benchmark circuits. The most complex of these benchmarks has as many as 135,898 gates. Detection times are very efficient with a 100% rate of detection, i.e., all Trojan sequential elements were detected and all non-trojan sequential elements were classified as such.
Sai Sruthi, Ch, Lohitha, M, Sriniketh, S.K, Manassa, D, Srilakshmi, K, Priyatharishini, M.  2021.  Genetic Algorithm based Hardware Trojan Detection. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1431–1436.
There is an increasing concern about possible hostile modification done to ICs, which are used in various critical applications. Such malicious modifications are referred to as Hardware Trojan. A novel procedure to detect these malicious Trojans using Genetic algorithm along with the logical masking technique which masks the Trojan module when embedded is presented in this paper. The circuit features such as transition probability and SCOAP are used as suitable parameters to identify the rare nodes which are more susceptible for Trojan insertion. A set of test patterns called optimal test patterns are generated using Genetic algorithm to claim that these test vectors are more feasible to detect the presence of Trojan in the circuit under test. The proposed methodologies are validated in accordance with ISCAS '85 and ISCAS '89 benchmark circuits. The experimental results proven that it achieves maximum Trigger coverage, Trojan coverage and is also able to successfully mask the inserted Trojan when it is triggered by the optimal test patterns.
S, Deepthi, R, Ramesh S., M, Nirmala Devi.  2021.  Hardware Trojan Detection using Ring Oscillator. 2021 6th International Conference on Communication and Electronics Systems (ICCES). :362–368.
Hardware Trojans are malicious modules causing vulnerabilities in designs. Secured hardware designs are desirable in almost all applications. So, it is important to make a trustworthy design that actually exposes malfunctions when a Trojan is present in it. Recently, ring oscillator based detection methods are gaining prominence as they help in detecting Trojans accurately. In this work, a non-destructive method of Trojan detection by modifying the circuit paths into oscillators is proposed. The change in frequencies of ring oscillators upon taking the process corners into account, indicate the presence of Trojans. Since Transient Effect Ring Oscillators (TERO) are also emerging as a good alternative to classical ring oscillators in Trojan detection, an effort is made to analyze the detection capability. Evaluation is done using ISCAS'85 benchmark circuits. Comparison is done in terms of frequency and findings indicate that TERO based Trojan detection is precise. Evaluation is carried out using Xilinx Vivado and ModelSim platforms.
Kurihara, Tatsuki, Togawa, Nozomu.  2021.  Hardware-Trojan Classification based on the Structure of Trigger Circuits Utilizing Random Forests. 2021 IEEE 27th International Symposium on On-Line Testing and Robust System Design (IOLTS). :1–4.
Recently, with the spread of Internet of Things (IoT) devices, embedded hardware devices have been used in a variety of everyday electrical items. Due to the increased demand for embedded hardware devices, some of the IC design and manufacturing steps have been outsourced to third-party vendors. Since malicious third-party vendors may insert malicious circuits, called hardware Trojans, into their products, developing an effective hardware Trojan detection method is strongly required. In this paper, we propose 25 hardware-Trojan features based on the structure of trigger circuits for machine-learning-based hardware Trojan detection. Combining the proposed features into 11 existing hardware-Trojan features, we totally utilize 36 hardware-Trojan features for classification. Then we classify the nets in an unknown netlist into a set of normal nets and Trojan nets based on the random-forest classifier. The experimental results demonstrate that the average true positive rate (TPR) becomes 63.6% and the average true negative rate (TNR) becomes 100.0%. They improve the average TPR by 14.7 points while keeping the average TNR compared to existing state-of-the-art methods. In particular, the proposed method successfully finds out Trojan nets in several benchmark circuits, which are not found by the existing method.
J, Goutham Kumar, S, Gowri, Rajendran, Surendran, Vimali, J.S., Jabez, J., Srininvasulu, Senduru.  2021.  Identification of Cyber Threats and Parsing of Data. 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI). :556–564.
One of the significant difficulties in network safety is the arrangement of a mechanized and viable digital danger's location strategy. This paper presents an AI procedure for digital dangers recognition, in light of fake neural organizations. The proposed procedure changes large number of gathered security occasions over to singular occasion profiles and utilize a profound learning-based discovery strategy for upgraded digital danger identification. This research work develops an AI-SIEM framework dependent on a blend of occasion profiling for information preprocessing and distinctive counterfeit neural organization techniques by including FCNN, CNN, and LSTM. The framework centers around separating between obvious positive and bogus positive cautions, consequently causing security examiners to quickly react to digital dangers. All trials in this investigation are performed by creators utilizing two benchmark datasets (NSLKDD and CICIDS2017) and two datasets gathered in reality. To assess the presentation correlation with existing techniques, tests are carried out by utilizing the five ordinary AI strategies (SVM, k-NN, RF, NB, and DT). Therefore, the exploratory aftereffects of this examination guarantee that our proposed techniques are fit for being utilized as learning-based models for network interruption discovery and show that despite the fact that it is utilized in reality, the exhibition beats the traditional AI strategies.
2022-05-10
Zhang, Lixue, Li, Yuqin, Gao, Yan, Li, Yanfang, Shi, Weili, Jiang, Zhengang.  2021.  A memory-enhanced anomaly detection method for surveillance videos. 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). :1012–1015.
Surveillance videos can capture anomalies in real scenarios and play an important role in security systems. Anomaly events are unpredictable, which reflect the unsupervised nature of the problem. In addition, it is difficult to construct a complete video dataset which contains all normal events. Based on the diversity of normal events, this paper proposes a memory-enhanced unsupervised method for anomaly detection. The proposed method reconstructs video events by combining prototype features and encoded features to detect anomaly events. Furthermore, a memory module is introduced to better store the prototype patterns of normal events. Experimental results in various benchmark datasets demonstrate the effectiveness and robustness of the proposed method.
2022-04-19
McManus, Maxwell, Guan, Zhangyu, Bentley, Elizabeth Serena, Pudlewski, Scott.  2021.  Experimental Analysis of Cross-Layer Sensing for Protocol-Agnostic Packet Boundary Recognition. IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
Radio-frequency (RF) sensing is a key technology for designing intelligent and secure wireless networks with high spectral efficiency and environment-aware adaptation capabilities. However, existing sensing techniques can extract only limited information from RF signals or assume that the RF signals are generated by certain known protocols. As a result, their applications are limited if proprietary protocols or encryption methods are adopted, or in environments subject to errors such as unintended interference. To address this challenge, we study protocol-agnostic cross-layer sensing to extract high-layer protocol information from raw RF samples without any a priori knowledge of the protocols. First, we present a framework for protocol-agnostic sensing for over-the-air (OTA) RF signals, by taking packet boundary recognition (PBR) as an example. The framework consists of three major components: OTA Signal Generator, Agnostic RF Sink, and Ground Truth Generator. Then, we develop a software-defined testbed using USRP SDRs, with eleven benchmark statistical algorithms implemented in the Agnostic RF Sink, including Kullback-Leibler divergence and cross-power spectral density, among others. Finally, we test the effectiveness of these statistical algorithms in PBR on OTA RF samples, considering a wide variety of transmission parameters, including modulation type, transmission distance, and packet length. It is found that none of these benchmark statistical algorithms can achieve consistently high PBR rate, and new algorithms are required particularly in next-generation low-latency wireless systems.
2022-04-01
Marts, W. Pepper, Dosanjh, Matthew G. F., Levy, Scott, Schonbein, Whit, Grant, Ryan E., Bridges, Patrick G..  2021.  MiniMod: A Modular Miniapplication Benchmarking Framework for HPC. 2021 IEEE International Conference on Cluster Computing (CLUSTER). :12–22.
The HPC application community has proposed many new application communication structures, middleware interfaces, and communication models to improve HPC application performance. Modifying proxy applications is the standard practice for the evaluation of these novel methodologies. Currently, this requires the creation of a new version of the proxy application for each combination of the approach being tested. In this article, we present a modular proxy-application framework, MiniMod, that enables evaluation of a combination of independently written computation kernels, data transfer logic, communication access, and threading libraries. MiniMod is designed to allow rapid development of individual modules which can be combined at runtime. Through MiniMod, developers only need a single implementation to evaluate application impact under a variety of scenarios.We demonstrate the flexibility of MiniMod’s design by using it to implement versions of a heat diffusion kernel and the miniFE finite element proxy application, along with a variety of communication, granularity, and threading modules. We examine how changing communication libraries, communication granularities, and threading approaches impact these applications on an HPC system. These experiments demonstrate that MiniMod can rapidly improve the ability to assess new middleware techniques for scientific computing applications and next-generation hardware platforms.
Sedano, Wadlkur Kurniawan, Salman, Muhammad.  2021.  Auditing Linux Operating System with Center for Internet Security (CIS) Standard. 2021 International Conference on Information Technology (ICIT). :466—471.
Linux is one of the operating systems to support the increasingly rapid development of internet technology. Apart from the speed of the process, security also needs to be considered. Center for Internet Security (CIS) Benchmark is an example of a security standard. This study implements the CIS Benchmark using the Chef Inspec application. This research focuses on building a tool to perform security audits on the Ubuntu 20.04 operating system. 232 controls on CIS Benchmark were successfully implemented using Chef Inspec application. The results of this study were 87 controls succeeded, 118 controls failed, and 27 controls were skipped. This research is expected to be a reference for information system managers in managing system security.
Khurat, Assadarat, Sangkhachantharanan, Phirawat.  2021.  An Automatic Networking Device Auditing Tool Based on CIS Benchmark. 2021 18th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :409—412.
Security has become an important issue in an IT system of an organization. Each IT component has to be configured correctly, otherwise the risk of attack could increase. An important component is networking device such as router and switch. To avoid this misconfiguration, a well-known process called audit is used. There are several auditing tools both commercial and open-source. However, none of the existing tools that are open-source can automatically audit the security settings of networking device based on standard e.g., CIS benchmark. We, thus propose a tool that can verify the networking device automatically based on best practices so that auditors can conveniently check as well as issue a report.
2022-03-25
Huang, Jiaheng, Chen, Lei.  2021.  Transfer Learning Based Multi-objective Particle Swarm Optimization Algorithm. 2021 17th International Conference on Computational Intelligence and Security (CIS). :382—386.

In Particle Swarm Optimization Algorithm (PSO), the learning factors \$c\_1\$ and \$c\_2\$ are used to update the speed and location of a particle. However, the setting of those two important parameters has great effect on the performance of the PSO algorithm, which has limited its range of applications. To avoid the tedious parameter tuning, we introduce a transfer learning based adaptive parameter setting strategy to PSO in this paper. The proposed transfer learning strategy can adjust the two learning factors more effectively according to the environment change. The performance of the proposed algorithm is tested on sets of widely-used benchmark multi-objective test problems for DTLZ. The results comparing and analysis are conduced by comparing it with the state-of-art evolutionary multi-objective optimization algorithm NSGA-III to verify the effectiveness and efficiency of the proposed method.

2022-03-14
Nurmukhametov, Alexey, Vishnyakov, Alexey, Logunova, Vlada, Kurmangaleev, Shamil.  2021.  MAJORCA: Multi-Architecture JOP and ROP Chain Assembler. 2021 Ivannikov Ispras Open Conference (ISPRAS). :37–46.
Nowadays, exploits often rely on a code-reuse approach. Short pieces of code called gadgets are chained together to execute some payload. Code-reuse attacks can exploit vul-nerabilities in the presence of operating system protection that prohibits data memory execution. The ROP chain construction task is the code generation for the virtual machine defined by an exploited executable. It is crucial to understand how powerful ROP attacks can be. Such knowledge can be used to improve software security. We implement MAJORCA that generates ROP and JOP payloads in an architecture agnostic manner and thoroughly consider restricted symbols such as null bytes that terminate data copying via strcpy. The paper covers the whole code-reuse payloads construction pipeline: cataloging gadgets, chaining them in DAG, scheduling, linearizing to the ready-to-run payload. MAJORCA automatically generates both ROP and JOP payloads for x86 and MIPS. MAJORCA constructs payloads respecting restricted symbols both in gadget addresses and data. We evaluate MAJORCA performance and accuracy with rop-benchmark and compare it with open-source compilers. We show that MAJORCA outperforms open-source tools. We propose a ROP chaining metric and use it to estimate the probabilities of successful ROP chaining for different operating systems with MAJORCA as well as other ROP compilers to show that ROP chaining is still feasible. This metric can estimate the efficiency of OS defences.
2022-03-08
Liu, Yuanle, Xu, Chengjie, Wang, Yanwei, Yang, Weidong, Zheng, Ying.  2021.  Multidimensional Reconstruction-Based Contribution for Multiple Faults Isolation with k-Nearest Neighbor Strategy. 2021 40th Chinese Control Conference (CCC). :4510–4515.
In the multivariable fault diagnosis of industrial process, due to the existence of correlation between variables, the result of fault diagnosis will inevitably appear "smearing" effect. Although the fault diagnosis method based on the contribution of multi-dimensional reconstruction is helpful when multiple faults occur. But in order to correctly isolate all the fault variables, this method will become very inefficient due to the combination of variables. In this paper, a fault diagnosis method based on kNN and MRBC is proposed to fundamentally avoid the corresponding influence of "smearing", and a fast variable selection strategy is designed to accelerate the process of fault isolation. Finally, simulation study on a benchmark process verifies the effectiveness of the method, in comparison with the traditional method represented by FDA-based method.
2022-03-01
Amaran, Sibi, Mohan, R. Madhan.  2021.  Intrusion Detection System Using Optimal Support Vector Machine for Wireless Sensor Networks. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1100–1104.
Wireless sensor networks (WSN) hold numerous battery operated, compact sized, and inexpensive sensor nodes, which are commonly employed to observe the physical parameters in the target environment. As the sensor nodes undergo arbitrary placement in the open areas, there is a higher possibility of affected by distinct kinds of attacks. For resolving the issue, intrusion detection system (IDS) is developed. This paper presents a new optimal Support Vector Machine (OSVM) based IDS in WSN. The presented OSVM model involves the proficient selection of optimal kernels in the SVM model using whale optimization algorithm (WOA) for intrusion detection. Since the SVM kernel gets altered using WOA, the application of OSVM model can be used for the detection of intrusions with proficient results. The performance of the OSVM model has been investigated on the benchmark NSL KDDCup 99 dataset. The resultant simulation values portrayed the effectual results of the OSVM model by obtaining a superior accuracy of 94.09% and detection rate of 95.02%.
2022-02-22
Torquato, Matheus, Vieira, Marco.  2021.  VM Migration Scheduling as Moving Target Defense against Memory DoS Attacks: An Empirical Study. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—6.
Memory Denial of Service (DoS) attacks are easy-to-launch, hard to detect, and significantly impact their targets. In memory DoS, the attacker targets the memory of his Virtual Machine (VM) and, due to hardware isolation issues, the attack affects the co-resident VMs. Theoretically, we can deploy VM migration as Moving Target Defense (MTD) against memory DoS. However, the current literature lacks empirical evidence supporting this hypothesis. Moreover, there is a need to evaluate how the VM migration timing impacts the potential MTD protection. This practical experience report presents an experiment on VM migration-based MTD against memory DoS. We evaluate the impact of memory DoS attacks in the context of two applications running in co-hosted VMs: machine learning and OLTP. The results highlight that the memory DoS attacks lead to more than 70% reduction in the applications' performance. Nevertheless, timely VM migrations can significantly mitigate the attack effects in both considered applications.