Biblio
Short-term load forecasting systems for power grids have demonstrated high accuracy and have been widely employed for commercial use. However, classic load forecasting systems, which are based on statistical methods, are subject to vulnerability from training data poisoning. In this paper, we demonstrate a data poisoning strategy that effectively corrupts the forecasting model even in the presence of outlier detection. To the best of our knowledge, poisoning attack on short-term load forecasting with outlier detection has not been studied in previous works. Our method applies to several forecasting models, including the most widely-adapted and best-performing ones, such as multiple linear regression (MLR) and neural network (NN) models. Starting with the MLR model, we develop a novel closed-form solution to quickly estimate the new MLR model after a round of data poisoning without retraining. We then employ line search and simulated annealing to find the poisoning attack solution. Furthermore, we use the MLR attacking solution to generate a numerical solution for other models, such as NN. The effectiveness of our algorithm has been tested on the Global Energy Forecasting Competition (GEFCom2012) data set with the presence of outlier detection.
We propose a method to maintain high resource availability in a networked heterogeneous multi-robot system subject to resource failures. In our model, resources such as sensing and computation are available on robots. The robots are engaged in a joint task using these pooled resources. When a resource on a particular robot becomes unavailable (e.g., a sensor ceases to function), the system automatically reconfigures so that the robot continues to have access to this resource by communicating with other robots. Specifically, we consider the problem of selecting edges to be modified in the system's communication graph after a resource failure has occurred. We define a metric that allows us to characterize the quality of the resource distribution in the network represented by the communication graph. Upon a resource becoming unavailable due to failure, we reconFigure the network so that the resource distribution is brought as close to the maximal resource distribution as possible without a large change in the number of active inter-robot communication links. Our approach uses mixed integer semi-definite programming to achieve this goal. We employ a simulated annealing method to compute a spatial formation that satisfies the inter-robot distances imposed by the topology, along with other constraints. Our method can compute a communication topology, spatial formation, and formation change motion planning in a few seconds. We validate our method in simulation and real-robot experiments with a team of seven quadrotors.
Today, network security is a world hot topic in computer security and defense. Intrusions and attacks in network infrastructures lead mostly in huge financial losses, massive sensitive data leaks, thus decreasing efficiency, competitiveness and the quality of productivity of an organization. Network Intrusion Detection System (NIDS) is valuable tool for the defense-in-depth of computer networks. It is widely deployed in network architectures in order to monitor, to detect and eventually respond to any anomalous behavior and misuse which can threat confidentiality, integrity and availability of network resources and services. Thus, the presence of NIDS in an organization plays a vital part in attack mitigation, and it has become an integral part of a secure organization. In this paper, we propose to optimize a very popular soft computing tool widely used for intrusion detection namely Back Propagation Neural Network (BPNN) using a novel hybrid Framework (GASAA) based on improved Genetic Algorithm (GA) and Simulated Annealing Algorithm (SAA). GA is improved through an optimization strategy, namely Fitness Value Hashing (FVH), which reduce execution time, convergence time and save processing power. Experimental results on KDD CUP' 99 dataset show that our optimized ANIDS (Anomaly NIDS) based BPNN, called “ANIDS BPNN-GASAA” outperforms several state-of-art approaches in terms of detection rate and false positive rate. In addition, improvement of GA through FVH has saved processing power and execution time. Thereby, our proposed IDS is very much suitable for network anomaly detection.
A spectral-resource-utilization-efficient and highly resilient coarse granular routing optical network architecture is proposed. The improvement in network resiliency is realized by a novel concept named loop inflation that aims to enhance the geographical diversity of a working path and its redundant path. The trade-off between the inflation and the growth in circumference length of loops is controlled by the Simulated Annealing technique. Coarse granular routing is combined with resilient path design to realize higher spectral resource utilization. The routing scheme defines virtual direct links (VDLs) bridging distant nodes to alleviate the spectrum narrowing effect at the nodes traversed, allowing optical channels to be more densely accommodated by the fibers installed. Numerical experiments elucidate that the proposed networks successfully achieve a 30+0/0 route diversity improvement and a 12% fiber number reduction over conventional networks.
Computational Intelligence (CI) has a great potential in Security & Defense (S&D) applications. Nevertheless, such potential seems to be still under exploited. In this work we first review CI applications in the maritime domain, done in the past decades by NATO Nations. Then we discuss challenges and opportunities for CI in S&D. Finally we argue that a review of the academic training of military officers is highly recommendable, in order to allow them to understand, model and solve new problems, using CI techniques.
Metaheuristic search technique is one of the advance approach when compared with traditional heuristic search technique. To select one option among different alternatives is not hard to get but really hard is give assurance that being cost effective. This hard problem is solved by the meta-heuristic search technique with the help of fitness function. Fitness function is a crucial metrics or a measure which helps in deciding which solution is optimal to choose from available set of test sets. This paper discusses hill climbing, simulated annealing, tabu search, genetic algorithm and particle swarm optimization techniques in detail explaining with the help of the algorithm. If metaheuristic search techniques combine some of the security testing methods, it would result in better searching technique as well as secure too. This paper primarily focusses on the metaheuristic search techniques.
With recent advances in consumer electronics and the increasingly urgent need for public security, camera networks have evolved from their early role of providing simple and static monitoring to current complex systems capable of obtaining extensive video information for intelligent processing, such as target localization, identification, and tracking. In all cases, it is of vital importance that the optimal camera configuration (i.e., optimal location, orientation, etc.) is determined before cameras are deployed as a suboptimal placement solution will adversely affect intelligent video surveillance and video analytic algorithms. The optimal configuration may also provide substantial savings on the total number of cameras required to achieve the same level of utility. In this article, we examine most, if not all, of the recent approaches (post 2000) addressing camera placement in a structured manner. We believe that our work can serve as a first point of entry for readers wishing to start researching into this area or engineers who need to design a camera system in practice. To this end, we attempt to provide a complete study of relevant formulation strategies and brief introductions to most commonly used optimization techniques by researchers in this field. We hope our work to be inspirational to spark new ideas in the field.