Visible to the public Biblio

Filters: Keyword is distributed algorithms  [Clear All Filters]
2021-12-21
Kowalski, Dariusz R., Mosteiro, Miguel A..  2021.  Time and Communication Complexity of Leader Election in Anonymous Networks. 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS). :449–460.
We study the problem of randomized Leader Election in synchronous distributed networks with indistinguishable nodes. We consider algorithms that work on networks of arbitrary topology in two settings, depending on whether the size of the network, i.e., the number of nodes \$n\$, is known or not. In the former setting, we present a new Leader Election protocol that improves over previous work by lowering message complexity and making it close to a lower bound by a factor in \$$\backslash$widetildeO($\backslash$sqrtt\_mix$\backslash$sqrt$\backslash$Phi)\$, where $\Phi$ is the conductance and \textsubscriptmix is the mixing time of the network graph. We then show that lacking the network size no Leader Election algorithm can guarantee that the election is final with constant probability, even with unbounded communication. Hence, we further classify the problem as Leader Election (the classic one, requiring knowledge of \$n\$ - as is our first protocol) or Revocable Leader Election, and present a new polynomial time and message complexity Revocable Leader Election algorithm in the setting without knowledge of network size. We analyze time and message complexity of our protocols in the CONGEST model of communication.
2020-09-28
Zhang, Xueru, Khalili, Mohammad Mahdi, Liu, Mingyan.  2018.  Recycled ADMM: Improve Privacy and Accuracy with Less Computation in Distributed Algorithms. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :959–965.
Alternating direction method of multiplier (ADMM) is a powerful method to solve decentralized convex optimization problems. In distributed settings, each node performs computation with its local data and the local results are exchanged among neighboring nodes in an iterative fashion. During this iterative process the leakage of data privacy arises and can accumulate significantly over many iterations, making it difficult to balance the privacy-utility tradeoff. In this study we propose Recycled ADMM (R-ADMM), where a linear approximation is applied to every even iteration, its solution directly calculated using only results from the previous, odd iteration. It turns out that under such a scheme, half of the updates incur no privacy loss and require much less computation compared to the conventional ADMM. We obtain a sufficient condition for the convergence of R-ADMM and provide the privacy analysis based on objective perturbation.
2018-07-06
Zhang, R., Zhu, Q..  2017.  A game-theoretic defense against data poisoning attacks in distributed support vector machines. 2017 IEEE 56th Annual Conference on Decision and Control (CDC). :4582–4587.

With a large number of sensors and control units in networked systems, distributed support vector machines (DSVMs) play a fundamental role in scalable and efficient multi-sensor classification and prediction tasks. However, DSVMs are vulnerable to adversaries who can modify and generate data to deceive the system to misclassification and misprediction. This work aims to design defense strategies for DSVM learner against a potential adversary. We use a game-theoretic framework to capture the conflicting interests between the DSVM learner and the attacker. The Nash equilibrium of the game allows predicting the outcome of learning algorithms in adversarial environments, and enhancing the resilience of the machine learning through dynamic distributed algorithms. We develop a secure and resilient DSVM algorithm with rejection method, and show its resiliency against adversary with numerical experiments.

2018-02-06
Resch, S., Paulitsch, M..  2017.  Using TLA+ in the Development of a Safety-Critical Fault-Tolerant Middleware. 2017 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :146–152.

Creating and implementing fault-tolerant distributed algorithms is a challenging task in highly safety-critical industries. Using formal methods supports design and development of complex algorithms. However, formal methods are often perceived as an unjustifiable overhead. This paper presents the experience and insights when using TLA+ and PlusCal to model and develop fault-tolerant and safety-critical modules for TAS Control Platform, a platform for railway control applications up to safety integrity level (SIL) 4. We show how formal methods helped us improve the correctness of the algorithms, improved development efficiency and how part of the gap between model and implementation has been closed by translation to C code. Additionally, we describe how we gained trust in the formal model and tools by following a specific design process called property-driven design, which also implicitly addresses software quality metrics such as code coverage metrics.

2017-10-13
Denysyuk, Oksana, Woelfel, Philipp.  2016.  Are Shared Objects Composable Under an Oblivious Adversary? Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing. :335–344.

Linearizability [5] of a concurrent object ensures that operations on that object appear to execute atomically. It is well known that linearizable implementations are composable: in an algorithm designed to work with atomic objects, replacing any atomic object with a linearizable implementation preserves the correctness of the original algorithm. However, replacing atomic objects with linearizable ones in a randomized algorithm can break the original probabilistic guarantees [3]. With an adaptive adversary, this problem is solved by using strongly linearizable [3] objects in the composition. How about with an oblivious adversary. In this paper, we ask the fundamental question of what property makes implementations composable under an oblivious adversary. It turns out that the property depends on the entire collection of objects used in the algorithm. We show that the composition of every randomized algorithm with a collection of linearizable objects OL is sound if and only if OL satisfies a property called library homogeneity. Roughly, this property says that, for each process, every operation on OL has the same length and linearization point. This result has several important implications. First, for an oblivious adversary, there is nothing analogous to linearizability to ensure that the atomic objects of an algorithm can be replaced with their implementations. Second, in general, algorithms cannot use implemented objects alongside atomic objects provided by the system, such as registers. These results show that, with an oblivious adversary, it is much harder to implement reusable object types than previously believed.

2017-09-15
Dhulipala, Laxman, Kabiljo, Igor, Karrer, Brian, Ottaviano, Giuseppe, Pupyrev, Sergey, Shalita, Alon.  2016.  Compressing Graphs and Indexes with Recursive Graph Bisection. Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1535–1544.

Graph reordering is a powerful technique to increase the locality of the representations of graphs, which can be helpful in several applications. We study how the technique can be used to improve compression of graphs and inverted indexes. We extend the recent theoretical model of Chierichetti et al. (KDD 2009) for graph compression, and show how it can be employed for compression-friendly reordering of social networks and web graphs and for assigning document identifiers in inverted indexes. We design and implement a novel theoretically sound reordering algorithm that is based on recursive graph bisection. Our experiments show a significant improvement of the compression rate of graph and indexes over existing heuristics. The new method is relatively simple and allows efficient parallel and distributed implementations, which is demonstrated on graphs with billions of vertices and hundreds of billions of edges.

2015-05-04
Yun Shen, Thonnard, O..  2014.  MR-TRIAGE: Scalable multi-criteria clustering for big data security intelligence applications. Big Data (Big Data), 2014 IEEE International Conference on. :627-635.

Security companies have recently realised that mining massive amounts of security data can help generate actionable intelligence and improve their understanding of Internet attacks. In particular, attack attribution and situational understanding are considered critical aspects to effectively deal with emerging, increasingly sophisticated Internet attacks. This requires highly scalable analysis tools to help analysts classify, correlate and prioritise security events, depending on their likely impact and threat level. However, this security data mining process typically involves a considerable amount of features interacting in a non-obvious way, which makes it inherently complex. To deal with this challenge, we introduce MR-TRIAGE, a set of distributed algorithms built on MapReduce that can perform scalable multi-criteria data clustering on large security data sets and identify complex relationships hidden in massive datasets. The MR-TRIAGE workflow is made of a scalable data summarisation, followed by scalable graph clustering algorithms in which we integrate multi-criteria evaluation techniques. Theoretical computational complexity of the proposed parallel algorithms are discussed and analysed. The experimental results demonstrate that the algorithms can scale well and efficiently process large security datasets on commodity hardware. Our approach can effectively cluster any type of security events (e.g., spam emails, spear-phishing attacks, etc) that are sharing at least some commonalities among a number of predefined features.
 

2015-04-30
Peng Yi, Yiguang Hong.  2014.  Distributed continuous-time gradient-based algorithm for constrained optimization. Control Conference (CCC), 2014 33rd Chinese. :1563-1567.

In this paper, we consider distributed algorithm based on a continuous-time multi-agent system to solve constrained optimization problem. The global optimization objective function is taken as the sum of agents' individual objective functions under a group of convex inequality function constraints. Because the local objective functions cannot be explicitly known by all the agents, the problem has to be solved in a distributed manner with the cooperation between agents. Here we propose a continuous-time distributed gradient dynamics based on the KKT condition and Lagrangian multiplier methods to solve the optimization problem. We show that all the agents asymptotically converge to the same optimal solution with the help of a constructed Lyapunov function and a LaSalle invariance principle of hybrid systems.