Visible to the public Biblio

Found 100 results

Filters: Keyword is generative adversarial networks  [Clear All Filters]
2022-11-02
Zhang, Minghao, He, Lingmin, Wang, Xiuhui.  2021.  Image Translation based on Attention Residual GAN. 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE). :802–805.
Using Generative Adversarial Networks (GAN) to translate images is a significant field in computer vision. There are partial distortion, artifacts and detail loss in the images generated by current image translation algorithms. In order to solve this problem, this paper adds attention-based residual neural network to the generator of GAN. Attention-based residual neural network can improve the representation ability of the generator by weighting the channels of the feature map. Experiment results on the Facades dataset show that Attention Residual GAN can translate images with excellent quality.
Myakotin, Dmitriy, Varkentin, Vitalii.  2021.  Classification of Network Traffic Using Generative Adversarial Networks. 2021 International Conference on Quality Management, Transport and Information Security, Information Technologies (IT&QM&IS). :519–525.
Currently, the increasing complexity of DDoS attacks makes it difficult for modern security systems to track them. Machine learning techniques are increasingly being used in such systems as they are well established. However, a new problem arose: the creation of informative datasets. Generative adversarial networks can help create large, high-quality datasets for machine learning training. The article discusses the issue of using generative adversarial networks to generate new patterns of network attacks for the purpose of their further use in training.
Zhao, Li, Jiao, Yan, Chen, Jie, Zhao, Ruixia.  2021.  Image Style Transfer Based on Generative Adversarial Network. 2021 International Conference on Computer Network, Electronic and Automation (ICCNEA). :191–195.
Image style transfer refers to the transformation of the style of image, so that the image details are retained to the maximum extent while the style is transferred. Aiming at the problem of low clarity of style transfer images generated by CycleGAN network, this paper improves the CycleGAN network. In this paper, the network model of auto-encoder and variational auto-encoder is added to the structure. The encoding part of the auto-encoder is used to extract image content features, and the variational auto-encoder is used to extract style features. At the same time, the generating network of the model in this paper uses first to adjust the image size and then perform the convolution operation to replace the traditional deconvolution operation. The discriminating network uses a multi-scale discriminator to force the samples generated by the generating network to be more realistic and approximate the target image, so as to improve the effect of image style transfer.
2022-09-20
Li, Zeyi, Wang, Yun, Wang, Pan, Su, Haorui.  2021.  PGAN:A Generative Adversarial Network based Anomaly Detection Method for Network Intrusion Detection System. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :734—741.
With the rapid development of communication net-work, the types and quantities of network traffic data have in-creased substantially. What followed was the frequent occurrence of versatile cyber attacks. As an important part of network security, the network-based intrusion detection system (NIDS) can monitor and protect the network equippments and terminals in real time. The traditional detection methods based on deep learning (DL) are always in supervised manners in NIDS, which can automatically build end-to-end detection model without man-ual feature extraction and selection by domain experts. However, supervised learning methods require large-scale labeled data, yet capturing large labeled datasets is a very cubersome, tedious and time-consuming manual task. Instead, unsupervised learning is an effective way to overcome this problem. Nonetheless, the ex-isting unsupervised methods are prone to low detection efficiency and are difficult to train. In this paper we propose a novel NIDS method called PGAN based on generative adversarial network (GAN) to detect the abnormal traffic from the perspective of Anomaly Detection, which leverage the competitive speciality of adversarial training to learn the normal traffic. Based on the public dataset CICIDS2017, three experimental results show that PGAN can significantly outperform other unsupervised methods like stacked autoencoder (SAE) and isolation forest (IF).
2022-08-26
Zhang, Haichun, Huang, Kelin, Wang, Jie, Liu, Zhenglin.  2021.  CAN-FT: A Fuzz Testing Method for Automotive Controller Area Network Bus. 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). :225–231.
The Controller Area Network (CAN) bus is the de-facto standard for connecting the Electronic Control Units (ECUs) in automobiles. However, there are serious cyber-security risks due to the lack of security mechanisms. In order to mine the vulnerabilities in CAN bus, this paper proposes CAN-FT, a fuzz testing method for automotive CAN bus, which uses a Generative Adversarial Network (GAN) based fuzzy message generation algorithm and the Adaptive Boosting (AdaBoost) based anomaly detection mechanism to capture the abnormal states of CAN bus. Experimental results on a real-world vehicle show that CAN-FT can find vulnerabilities more efficiently and comprehensively.
2022-08-10
Amirian, Soheyla, Taha, Thiab R., Rasheed, Khaled, Arabnia, Hamid R..  2021.  Generative Adversarial Network Applications in Creating a Meta-Universe. 2021 International Conference on Computational Science and Computational Intelligence (CSCI). :175—179.
Generative Adversarial Networks (GANs) are machine learning methods that are used in many important and novel applications. For example, in imaging science, GANs are effectively utilized in generating image datasets, photographs of human faces, image and video captioning, image-to-image translation, text-to-image translation, video prediction, and 3D object generation to name a few. In this paper, we discuss how GANs can be used to create an artificial world. More specifically, we discuss how GANs help to describe an image utilizing image/video captioning methods and how to translate the image to a new image using image-to-image translation frameworks in a theme we desire. We articulate how GANs impact creating a customized world.
Song, Zhenlin, Sun, Linyun.  2021.  Comparing Performance and Efficiency of Designers and Design Intelligence. 2021 14th International Symposium on Computational Intelligence and Design (ISCID). :57—60.
Intelligent design has been an emerging important area in the design. Existing works related to intelligent design use objective indicators to measure the quality of AI design by comparing the differences between AI-generated data and real data. However, the level of quality and efficiency of intelligent design compared to human designers remains unclear. We conducted user experiments to compare the design quality and efficiency of advanced design methods with that of junior designers. The conclusion is advanced intelligent design methods are comparable with junior designers on painting. Besides, intelligent design uses only 10% of the time spent by the junior designer in the tasks of layout design, color matching, and video editing.
2022-07-12
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2021.  Optimization of Encrypted Communication Length Based on Generative Adversarial Network. 2021 IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI). :165—170.
With the development of artificial intelligence and cryptography, intelligent cryptography will be the trend of encrypted communications in the future. Abadi designed an encrypted communication model based on a generative adversarial network, which can communicate securely when the adversary knows the ciphertext. The communication party and the adversary fight against each other to continuously improve their own capabilities to achieve a state of secure communication. However, this model can only have a better communication effect under the 16 bits communication length, and cannot adapt to the length of modern encrypted communication. Combine the neural network structure in DCGAN to optimize the neural network of the original model, and at the same time increase the batch normalization process, and optimize the loss function in the original model. Experiments show that under the condition of the maximum 2048-bit communication length, the decryption success rate of communication reaches about 0.97, while ensuring that the adversary’s guess error rate is about 0.95, and the training speed is greatly increased to keep it below 5000 steps, ensuring safety and efficiency Communication.
2022-06-30
Mathai, Angelo, Nirmal, Atharv, Chaudhari, Purva, Deshmukh, Vedant, Dhamdhere, Shantanu, Joglekar, Pushkar.  2021.  Audio CAPTCHA for Visually Impaired. 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME). :1—5.
Completely Automated Public Turing Tests (CAPTCHA) have been used to differentiate between computers and humans for quite some time now. There are many different varieties of CAPTCHAs - text-based, image-based, audio, video, arithmetic, etc. However, not all varieties are suitable for the visually impaired. As time goes by and Spambots and APIs grow more accurate, the CAPTCHA tests have been constantly updated to stay relevant, but that has not happened with the audio CAPTCHA. There exists an audio CAPTCHA intended for the blind/visually impaired but many blind/visually impaired find it difficult to solve. We propose an alternative to the existing system, which would make use of unique sound samples layered with music generated through GANs (Generative Adversarial Networks) along with noise and other layers of sounds to make it difficult to dissect. The user has to count the number of times the unique sound was heard in the sample and then input that number. Since there are no letters or numbers involved in the samples, speech-to-text bots/APIs cannot be used directly to decipher this system. Also, any user regardless of their native language can comfortably use this system.
2022-06-07
Gayathri, R G, Sajjanhar, Atul, Xiang, Yong, Ma, Xingjun.  2021.  Anomaly Detection for Scenario-based Insider Activities using CGAN Augmented Data. 2021 IEEE 20th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :718–725.
Insider threats are the cyber attacks from the trusted entities within an organization. An insider attack is hard to detect as it may not leave a footprint and potentially cause huge damage to organizations. Anomaly detection is the most common approach for insider threat detection. Lack of real-world data and the skewed class distribution in the datasets makes insider threat analysis an understudied research area. In this paper, we propose a Conditional Generative Adversarial Network (CGAN) to enrich under-represented minority class samples to provide meaningful and diverse data for anomaly detection from the original malicious scenarios. Comprehensive experiments performed on benchmark dataset demonstrates the effectiveness of using CGAN augmented data, and the capability of multi-class anomaly detection for insider activity analysis. Moreover, the method is compared with other existing methods against different parameters and performance metrics.
2022-04-25
Wang, Chenxu, Yao, Yanxin, Yao, Han.  2021.  Video anomaly detection method based on future frame prediction and attention mechanism. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :0405–0407.
With the development of deep learning technology, a large number of new technologies for video anomaly detection have emerged. This paper proposes a video anomaly detection algorithm based on the future frame prediction using Generative Adversarial Network (GAN) and attention mechanism. For the generation model, a U-Net model, is modified and added with an attention module. For the discrimination model, a Markov GAN discrimination model with self-attention mechanism is proposed, which can affect the generator and improve the generation quality of the future video frame. Experiments show that the new video anomaly detection algorithm improves the detection performance, and the attention module plays an important role in the overall detection performance. It is found that the more the attention modules are appliedthe deeper the application level is, the better the detection effect is, which also verifies the rationality of the model structure used in this project.
2022-04-18
Zhang, Junpeng, Li, Mengqian, Zeng, Shuiguang, Xie, Bin, Zhao, Dongmei.  2021.  A Survey on Security and Privacy Threats to Federated Learning. 2021 International Conference on Networking and Network Applications (NaNA). :319–326.
Federated learning (FL) has nourished a promising scheme to solve the data silo, which enables multiple clients to construct a joint model without centralizing data. The critical concerns for flourishing FL applications are that build a security and privacy-preserving learning environment. It is thus highly necessary to comprehensively identify and classify potential threats to utilize FL under security guarantees. This paper starts from the perspective of launched attacks with different computing participants to construct the unique threats classification, highlighting the significant attacks, e.g., poisoning attacks, inference attacks, and generative adversarial networks (GAN) attacks. Our study shows that existing FL protocols do not always provide sufficient security, containing various attacks from both clients and servers. GAN attacks lead to larger significant threats among the kinds of threats given the invisible of the attack process. Moreover, we summarize a detailed review of several defense mechanisms and approaches to resist privacy risks and security breaches. Then advantages and weaknesses are generalized, respectively. Finally, we conclude the paper to prospect the challenges and some potential research directions.
2022-04-13
Liu, Luo, Jiang, Wang, Li, Jia.  2021.  A CGAN-based DDoS Attack Detection Method in SDN. 2021 International Wireless Communications and Mobile Computing (IWCMC). :1030—1034.
Distributed denial of service (DDoS) attack is a common way of network attack. It has the characteristics of wide distribution, low cost and difficult defense. The traditional algorithms of machine learning (ML) have such shortcomings as excessive systemic overhead and low accuracy in detection of DDoS. In this paper, a CGAN (conditional generative adversarial networks, conditional GAN) -based method is proposed to detect the attack of DDoS. On off-line training, five features are extracted in order to adapt the input of neural network. On the online recognition, CGAN model is adopted to recognize the packets of DDoS attack. The experimental results demonstrate that our proposed method obtains the better performance than the random forest-based method.
2022-03-25
Shi, Peng, Chen, Xuebing, Kong, Xiangying, Cao, Xianghui.  2021.  SE-IDS: A Sample Equalization Method for Intrusion Detection in Industrial Control System. 2021 36th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :189—195.

With the continuous emergence of cyber attacks, the security of industrial control system (ICS) has become a hot issue in academia and industry. Intrusion detection technology plays an irreplaceable role in protecting industrial system from attacks. However, the imbalance between normal samples and attack samples seriously affects the performance of intrusion detection algorithms. This paper proposes SE-IDS, which uses generative adversarial networks (GAN) to expand the minority to make the number of normal samples and attack samples relatively balanced, adopts particle swarm optimization (PSO) to optimize the parameters of LightGBM. Finally, we evaluated the performance of the proposed model on the industrial network dataset.

2022-03-09
Bo, Xihao, Jing, Xiaoyang, Yang, Xiaojian.  2021.  Style Transfer Analysis Based on Generative Adversarial Networks. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :27—30.
Style transfer means using a neural network to extract the content of one image and the style of the other image. The two are combined to get the final result, broadly applied in social communication, animation production, entertainment items. Using style transfer, users can share and exchange images; painters can create specific art styles more readily with less creation cost and production time. Therefore, style transfer is widely concerned recently due to its various and valuable applications. In the past few years, the paper reviews style transfer and chooses three representative works to analyze in detail and contrast with each other, including StyleGAN, CycleGAN, and TL-GAN. Moreover, what function an ideal model of style transfer should realize is discussed. Compared with such a model, potential problems and prospects of different methods to achieve style transfer are listed. A couple of solutions to these drawbacks are given in the end.
Peng, Cheng, Xu, Chenning, Zhu, Yincheng.  2021.  Analysis of Neural Style Transfer Based on Generative Adversarial Network. 2021 IEEE International Conference on Computer Science, Electronic Information Engineering and Intelligent Control Technology (CEI). :189—192.
The goal of neural style transfer is to transform images by the deep learning method, such as changing oil paintings into sketch-style images. The Generative Adversarial Network (GAN) has made remarkable achievements in neural style transfer in recent years. At first, this paper introduces three typical neural style transfer methods, including StyleGAN, StarGAN, and Transparent Latent GAN (TL-GAN). Then, we discuss the advantages and disadvantages of these models, including the quality of the feature axis, the scale, and the model's interpretability. In addition, as the core of this paper, we put forward innovative improvements to the above models, including how to fully exploit the advantages of the above three models to derive a better style conversion model.
Yuan, Honghui, Yanai, Keiji.  2021.  Multi-Style Transfer Generative Adversarial Network for Text Images. 2021 IEEE 4th International Conference on Multimedia Information Processing and Retrieval (MIPR). :63—69.
In recent years, neural style transfer have shown impressive results in deep learning. In particular, for text style transfer, recent researches have successfully completed the transition from the text font domain to the text style domain. However, for text style transfer, multiple style transfer often requires learning many models, and generating multiple styles images of texts in a single model remains an unsolved problem. In this paper, we propose a multiple style transformation network for text style transfer, which can generate multiple styles of text images in a single model and control the style of texts in a simple way. The main idea is to add conditions to the transfer network so that all the styles can be trained effectively in the network, and to control the generation of each text style through the conditions. We also optimize the network so that the conditional information can be transmitted effectively in the network. The advantage of the proposed network is that multiple styles of text can be generated with only one model and that it is possible to control the generation of text styles. We have tested the proposed network on a large number of texts, and have demonstrated that it works well when generating multiple styles of text at the same time.
2022-03-01
Sapre, Suchet, Islam, Khondkar, Ahmadi, Pouyan.  2021.  A Comprehensive Data Sampling Analysis Applied to the Classification of Rare IoT Network Intrusion Types. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1–2.
With the rapid growth of Internet of Things (IoT) network intrusion attacks, there is a critical need for sophisticated and comprehensive intrusion detection systems (IDSs). Classifying infrequent intrusion types such as root-to-local (R2L) and user-to-root (U2R) attacks is a reoccurring problem for IDSs. In this study, various data sampling and class balancing techniques-Generative Adversarial Network (GAN)-based oversampling, k-nearest-neighbor (kNN) oversampling, NearMiss-1 undersampling, and class weights-were used to resolve the severe class imbalance affecting U2R and R2L attacks in the NSL-KDD intrusion detection dataset. Artificial Neural Networks (ANNs) were trained on the adjusted datasets, and their performances were evaluated with a multitude of classification metrics. Here, we show that using no data sampling technique (baseline), GAN-based oversampling, and NearMiss-l undersampling, all with class weights, displayed high performances in identifying R2L and U2R attacks. Of these, the baseline with class weights had the highest overall performance with an F1-score of 0.11 and 0.22 for the identification of U2R and R2L attacks, respectively.
2022-02-07
Wang, Shuwei, Wang, Qiuyun, Jiang, Zhengwei, Wang, Xuren, Jing, Rongqi.  2021.  A Weak Coupling of Semi-Supervised Learning with Generative Adversarial Networks for Malware Classification. 2020 25th International Conference on Pattern Recognition (ICPR). :3775–3782.
Malware classification helps to understand its purpose and is also an important part of attack detection. And it is also an important part of discovering attacks. Due to continuous innovation and development of artificial intelligence, it is a trend to combine deep learning with malware classification. In this paper, we propose an improved malware image rescaling algorithm (IMIR) based on local mean algorithm. Its main goal of IMIR is to reduce the loss of information from samples during the process of converting binary files to image files. Therefore, we construct a neural network structure based on VGG model, which is suitable for image classification. In the real world, a mass of malware family labels are inaccurate or lacking. To deal with this situation, we propose a novel method to train the deep neural network by Semi-supervised Generative Adversarial Network (SGAN), which only needs a small amount of malware that have accurate labels about families. By integrating SGAN with weak coupling, we can retain the weak links of supervised part and unsupervised part of SGAN. It improves the accuracy of malware classification by making classifiers more independent of discriminators. The results of experimental demonstrate that our model achieves exhibiting favorable performance. The recalls of each family in our data set are all higher than 93.75%.
2022-01-31
Wang, Xiying, Ni, Rongrong, Li, Wenjie, Zhao, Yao.  2021.  Adversarial Attack on Fake-Faces Detectors Under White and Black Box Scenarios. 2021 IEEE International Conference on Image Processing (ICIP). :3627–3631.
Generative Adversarial Network (GAN) models have been widely used in various fields. More recently, styleGAN and styleGAN2 have been developed to synthesize faces that are indistinguishable to the human eyes, which could pose a threat to public security. But latest work has shown that it is possible to identify fakes using powerful CNN networks as classifiers. However, the reliability of these techniques is unknown. Therefore, in this paper we focus on the generation of content-preserving images from fake faces to spoof classifiers. Two GAN-based frameworks are proposed to achieve the goal in the white-box and black-box. For the white-box, a network without up/down sampling is proposed to generate face images to confuse the classifier. In the black-box scenario (where the classifier is unknown), real data is introduced as a guidance for GAN structure to make it adversarial, and a Real Extractor as an auxiliary network to constrain the feature distance between the generated images and the real data to enhance the adversarial capability. Experimental results show that the proposed method effectively reduces the detection accuracy of forensic models with good transferability.
2021-12-22
Kim, Jiha, Park, Hyunhee.  2021.  OA-GAN: Overfitting Avoidance Method of GAN Oversampling Based on xAI. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :394–398.
The most representative method of deep learning is data-driven learning. These methods are often data-dependent, and lack of data leads to poor learning. There is a GAN method that creates a likely image as a way to solve a problem that lacks data. The GAN determines that the discriminator is fake/real with respect to the image created so that the generator learns. However, overfitting problems when the discriminator becomes overly dependent on the learning data. In this paper, we explain overfitting problem when the discriminator decides to fake/real using xAI. Depending on the area of the described image, it is possible to limit the learning of the discriminator to avoid overfitting. By doing so, the generator can produce similar but more diverse images.
2021-09-21
Li, Mingxuan, Lv, Shichao, Shi, Zhiqiang.  2020.  Malware Detection for Industrial Internet Based on GAN. 2020 IEEE International Conference on Information Technology,Big Data and Artificial Intelligence (ICIBA). 1:475–481.
This thesis focuses on the detection of malware in industrial Internet. The basic flow of the detection of malware contains feature extraction and sample identification. API graph can effectively represent the behavior information of malware. However, due to the high algorithm complexity of solving the problem of subgraph isomorphism, the efficiency of analysis based on graph structure feature is low. Due to the different scales of API graph of different malicious codes, the API graph needs to be normalized. Considering the difficulties of sample collection and manual marking, it is necessary to expand the number of malware samples in industrial Internet. This paper proposes a method that combines PageRank with TF-IDF to process the API graph. Besides, this paper proposes a method to construct the adversarial samples of malwares based on GAN.
2021-09-16
Yoon, JinYi, Lee, HyungJune.  2020.  PUFGAN: Embracing a Self-Adversarial Agent for Building a Defensible Edge Security Architecture. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :904–913.
In the era of edge computing and Artificial Intelligence (AI), securing billions of edge devices within a network against intelligent attacks is crucial. We propose PUFGAN, an innovative machine learning attack-proof security architecture, by embedding a self-adversarial agent within a device fingerprint- based security primitive, public PUF (PPUF) known for its strong fingerprint-driven cryptography. The self-adversarial agent is implemented using Generative Adversarial Networks (GANs). The agent attempts to self-attack the system based on two GAN variants, vanilla GAN and conditional GAN. By turning the attacking quality through generating realistic secret keys used in the PPUF primitive into system vulnerability, the security architecture is able to monitor its internal vulnerability. If the vulnerability level reaches at a specific value, PUFGAN allows the system to restructure its underlying security primitive via feedback to the PPUF hardware, maintaining security entropy at as high a level as possible. We evaluated PUFGAN on three different machine environments: Google Colab, a desktop PC, and a Raspberry Pi 2, using a real-world PPUF dataset. Extensive experiments demonstrated that even a strong device fingerprint security primitive can become vulnerable, necessitating active restructuring of the current primitive, making the system resilient against extreme attacking environments.
2021-07-27
Xiao, Wenli, Jiang, Hao, Xia, Song.  2020.  A New Black Box Attack Generating Adversarial Examples Based on Reinforcement Learning. 2020 Information Communication Technologies Conference (ICTC). :141–146.
Machine learning can be misled by adversarial examples, which is formed by making small changes to the original data. Nowadays, there are kinds of methods to produce adversarial examples. However, they can not apply non-differentiable models, reduce the amount of calculations, and shorten the sample generation time at the same time. In this paper, we propose a new black box attack generating adversarial examples based on reinforcement learning. By using deep Q-learning network, we can train the substitute model and generate adversarial examples at the same time. Experimental results show that this method only needs 7.7ms to produce an adversarial example, which solves the problems of low efficiency, large amount of calculation and inapplicable to non-differentiable model.
2021-06-30
Wang, Zhaoyuan, Wang, Dan, Duan, Qing, Sha, Guanglin, Ma, Chunyan, Zhao, Caihong.  2020.  Missing Load Situation Reconstruction Based on Generative Adversarial Networks. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I CPS Asia). :1528—1534.
The completion and the correction of measurement data are the foundation of the ubiquitous power internet of things construction. However, data missing may occur during the data transporting process. Therefore, a model of missing load situation reconstruction based on the generative adversarial networks is proposed in this paper to overcome the disadvantage of depending on data of other relevant factors in conventional methods. Through the unsupervised training, the proposed model can automatically learn the complex features of loads that are difficult to model explicitly to fill the incomplete load data without using other relevant data. Meanwhile, a method of online correction is put forward to improve the robustness of the reconstruction model in different scenarios. The proposed method is fully data-driven and contains no explicit modeling process. The test results indicate that the proposed algorithm is well-matched for the various scenarios, including the discontinuous missing load reconstruction and the continuous missing load reconstruction even massive data missing. Specifically, the reconstruction error rate of the proposed algorithm is within 4% under the absence of 50% load data.