Visible to the public Biblio

Filters: Keyword is electromagnetic waves  [Clear All Filters]
2020-09-18
Kaji, Shugo, Kinugawa, Masahiro, Fujimoto, Daisuke, Hayashi, Yu-ichi.  2019.  Data Injection Attack Against Electronic Devices With Locally Weakened Immunity Using a Hardware Trojan. IEEE Transactions on Electromagnetic Compatibility. 61:1115—1121.
Intentional electromagnetic interference (IEMI) of information and communication devices is based on high-power electromagnetic environments far exceeding the device immunity to electromagnetic interference. IEMI dramatically alters the electromagnetic environment throughout the device by interfering with the electromagnetic waves inside the device and destroying low-tolerance integrated circuits (ICs) and other elements, thereby reducing the availability of the device. In contrast, in this study, by using a hardware Trojan (HT) that is quickly mountable by physically accessing the devices, to locally weaken the immunity of devices, and then irradiating electromagnetic waves of a specific frequency, only the attack targets are intentionally altered electromagnetically. Therefore, we propose a method that uses these electromagnetic changes to rewrite or generate data and commands handled within devices. Specifically, targeting serial communication systems used inside and outside the devices, the installation of an HT on the communication channel weakens local immunity. This shows that it is possible to generate an electrical signal representing arbitrary data on the communication channel by applying electromagnetic waves of sufficiently small output compared with the conventional IEMI and letting the IC process the data. In addition, we explore methods for countering such attacks.
2019-11-25
Kışlal, Ahmet Oguz, Pusane, Ali Emre, Tuğcu, Tuna.  2018.  A comparative analysis of channel coding for molecular communication. 2018 26th Signal Processing and Communications Applications Conference (SIU). :1–4.
Networks established among nanomachines, also called nanonetworks, are crucial since, a single nanomachine most likely cannot handle task by itself. At the nano scale, electromagnetic waves lose their effectiveness. Molecular communication via diffusion (MCvD) is a new concept that aims to solve this problem. Information is carried out by either the type of molecules, or their concentration. The robustness of this communication method, as in the example of classical communication, is very important. Channel coding is the component that make communication less erroneous. If the desired error performance is high, channel coding is mandatory. In this paper, the performance of Bose-Chaudhuri-Hocquenghem (BCH) and Reed-Solomon (RS) codes for MCvD are evaluated by simulation and results are analyzed.
2017-11-20
Nozaki, Y., Ikezaki, Y., Yoshikawa, M..  2016.  Tamper resistance of IoT devices against electromagnnetic analysis. 2016 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). :1–2.

Lightweight block ciphers, which are required for IoT devices, have attracted attention. Simeck, which is one of the most popular lightweight block ciphers, can be implemented on IoT devices in the smallest area. Regarding the hardware security, the threat of electromagnetic analysis has been reported. However, electromagnetic analysis of Simeck has not been reported. Therefore, this study proposes a dedicated electromagnetic analysis for a lightweight block cipher Simeck to ensure the safety of IoT devices in the future. To our knowledge, this is the first electromagnetic analysis for Simeck. Experiments using a FPGA prove the validity of the proposed method.