Biblio
One of the most efficient tool for human face recognition is neural networks. However, the result of recognition can be spoiled by facial expressions and other deviation from the canonical face representation. In this paper, we propose a resampling method of human faces represented by 3D point clouds. The method is based on a non-rigid Iterative Closest Point (ICP) algorithm. To improve the facial recognition performance, we use a combination of the proposed method and convolutional neural network (CNN). Computer simulation results are provided to illustrate the performance of the proposed method.
Network security has become an important issue in our work and life. Hackers' attack mode has been upgraded from normal attack to APT( Advanced Persistent Threat, APT) attack. The key of APT attack chain is the penetration and intrusion of active directory, which can not be completely detected via the traditional IDS and antivirus software. Further more, lack of security protection of existing solutions for domain control aggravates this problem. Although researchers have proposed methods for domain attack detection, many of them have not yet been converted into effective market-oriented products. In this paper, we analyzes the common domain intrusion methods, various domain related attack behavior characteristics were extracted from ATT&CK matrix (Advanced tactics, techniques, and common knowledge) for analysis and simulation test. Based on analyzing the log file generated by the attack, the domain attack detection rules are established and input into the analysis engine. Finally, the available domain intrusion detection system is designed and implemented. Experimental results show that the network attack detection method based on the analysis of domain attack behavior can analyze the log file in real time and effectively detect the malicious intrusion behavior of hackers , which could facilitate managers find and eliminate network security threats immediately.
Modern JavaScript applications extensively depend on third-party libraries. Especially for the Node.js platform, vulnerabilities can have severe consequences to the security of applications, resulting in, e.g., cross-site scripting and command injection attacks. Existing static analysis tools that have been developed to automatically detect such issues are either too coarse-grained, looking only at package dependency structure while ignoring dataflow, or rely on manually written taint specifications for the most popular libraries to ensure analysis scalability. In this work, we propose a technique for automatically extracting taint specifications for JavaScript libraries, based on a dynamic analysis that leverages the existing test suites of the libraries and their available clients in the npm repository. Due to the dynamic nature of JavaScript, mapping observations from dynamic analysis to taint specifications that fit into a static analysis is non-trivial. Our main insight is that this challenge can be addressed by a combination of an access path mechanism that identifies entry and exit points, and the use of membranes around the libraries of interest. We show that our approach is effective at inferring useful taint specifications at scale. Our prototype tool automatically extracts 146 additional taint sinks and 7 840 propagation summaries spanning 1 393 npm modules. By integrating the extracted specifications into a commercial, state-of-the-art static analysis, 136 new alerts are produced, many of which correspond to likely security vulnerabilities. Moreover, many important specifications that were originally manually written are among the ones that our tool can now extract automatically.
Malware threats often go undetected immediately, because attackers can camouflage well within the system. The users realize this after the devices stop working and cause harm for them. One way to deceive malicious content detection, malware authors use packers. Malware analysis is an activity to gain knowledge about malware. Reverse engineering is a technique used to identify and deal with new viruses or to understand malware behavior. Therefore, this technique can be the right choice for conducting malware analysis, especially for malware with packers. The results of the analysis are used as a source for making creating indicator of compromise in the YARA rule format. YARA rule is used as a component for detecting malware using the indicators obtained in the analysis process.
Anomaly detection is one of the research hotspots in Bitcoin transaction data analysis. In view of the existing research that only considers the transaction as an isolated node when extracting features, but has not yet used the network structure to dig deep into the node information, a bitcoin abnormal transaction detection method that combines the node’s own features and the neighborhood features is proposed. Based on the formation mechanism of the interactive relationship in the transaction network, first of all, according to a certain path selection probability, the features of the neighbohood nodes are extracted by way of random walk, and then the node’s own features and the neighboring features are fused to use the network structure to mine potential node information. Finally, an unsupervised detection algorithm is used to rank the transaction points on the constructed feature set to find abnormal transactions. Experimental results show that, compared with the existing feature extraction methods, feature fusion improves the ability to detect abnormal transactions.
Along with the development of the Windows operating system, browser applications to surf the internet are also growing rapidly. The most widely used browsers today are Google Chrome and Mozilla Firefox. Both browsers have a username and password management feature that makes users login to a website easily, but saving usernames and passwords in the browser is quite dangerous because the stored data can be hacked using brute force attacks or read through a program. One way to get a username and password in the browser is to use a program that can read Google Chrome and Mozilla Firefox login data from the computer's internal storage and then show those data. In this study, an attack will be carried out by implementing Rubber Ducky using BadUSB to run the ChromePass and PasswordFox program and the PowerShell script using the Arduino Pro Micro Leonardo device as a USB Password Stealer. The results obtained from this study are the username and password on Google Chrome and Mozilla Firefox successfully obtained when the USB is connected to the target device, the average time of the attack is 14 seconds then sending it to the author's email.
Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.
Malware is any software that causes harm to the user information, computer systems or network. Modern computing and internet systems are facing increase in malware threats from the internet. It is observed that different malware follows the same patterns in their structure with minimal alterations. The type of threats has evolved, from file-based malware to fileless malware, such kind of threats are also known as Advance Volatile Threat (AVT). Fileless malware is complex and evasive, exploiting pre-installed trusted programs to infiltrate information with its malicious intent. Fileless malware is designed to run in system memory with a very small footprint, leaving no artifacts on physical hard drives. Traditional antivirus signatures and heuristic analysis are unable to detect this kind of malware due to its sophisticated and evasive nature. This paper provides information relating to detection, mitigation and analysis for such kind of threat.
The article is devoted to the analysis of the use of blockchain technology for self-organization of network communities. Network communities are characterized by the key role of trust in personal interactions, the need for repeated interactions, strong and weak ties within the network, social learning as the mechanism of self-organization. Therefore, in network communities reputation is the central component of social action, assessment of the situation, and formation of the expectations. The current proliferation of virtual network communities requires the development of appropriate technical infrastructure in the form of reputation systems - programs that provide calculation of network members reputation and organization of their cooperation and interaction. Traditional reputation systems have vulnerabilities in the field of information security and prevention of abusive behavior of agents. Overcoming these restrictions is possible through integration of reputation systems and blockchain technology that allows to increase transparency of reputation assessment system and prevent attempts of manipulation the system and social engineering. At the same time, the most promising is the use of blockchain-oracles to ensure communication between the algorithms of blockchain-based reputation system and the external information environment. The popularization of blockchain technology and its implementation in various spheres of social management, production control, economic exchange actualizes the problems of using digital technologies in political processes and their impact on the formation of digital authoritarianism, digital democracy and digital anarchism. The paper emphasizes that blockchain technology and reputation systems can equally benefit both the resources of government control and tools of democratization and public accountability to civil society or even practices of avoiding government. Therefore, it is important to take into account the problems of political institutionalization, path dependence and the creation of differentiated incentives as well as the technological aspects.
Cross-site scripting (XSS) is an often-occurring major attack that developers should consider when developing web applications. We develop a system that can provide practical exercises for learning how to create web applications that are secure against XSS. Our system utilizes free software and virtual machines, allowing low-cost, safe, and practical exercises. By using two virtual machines as the web server and the attacker host, the learner can conduct exercises demonstrating both XSS countermeasures and XSS attacks. In our system, learners use a web browser to learn and perform exercises related to XSS. Experimental evaluations confirm that the proposed system can support learning of XSS countermeasures.
ARtect is an Augmented Reality application developed with Unity 3D, which envisions an educational interactive and immersive tool for architects, designers, researchers, and artists. This digital instrument renders the competency to visualize custom-made 3D models and 2D graphics in interior and exterior environments. The user-friendly interface offers an accurate insight before the materialization of any architectural project, enabling evaluation of the design proposal. This practice could be integrated into learning architectural design process, saving resources of printed drawings, and 3D carton models during several stages of spatial conception.
Experimentation focused on assessing the value of complex visualisation approaches when compared with alternative methods for data analysis is challenging. The interaction between participant prior knowledge and experience, a diverse range of experimental or real-world data sets and a dynamic interaction with the display system presents challenges when seeking timely, affordable and statistically relevant experimentation results. This paper outlines a hybrid approach proposed for experimentation with complex interactive data analysis tools, specifically for computer network traffic analysis. The approach involves a structured survey completed after free engagement with the software platform by expert participants. The survey captures objective and subjective data points relating to the experience with the goal of making an assessment of software performance which is supported by statistically significant experimental results. This work is particularly applicable to field of network analysis for cyber security and also military cyber operations and intelligence data analysis.
This article describes the development of two mobile applications for learning Digital Electronics. The first application is an interactive app for iOS where you can study the different digital circuits, and which will serve as the basis for the second: a game of questions in augmented reality.