Biblio
Ensemble waveform analysis is used to calculate signal to noise ratio (SNR) and other recording characteristics from micromagnetically modeled heat assisted magnetic recording waveforms and waveforms measured at both drive and spin-stand level. Using windowing functions provides the breakdown between transition and remanence SNRs. In addition, channel bit density (CBD) can be extracted from the ensemble waveforms using the di-bit extraction method. Trends in both transition SNR, remanence SNR, and CBD as a function of ambient temperature at constant track width showed good agreement between model and measurement. Both model and drive-level measurement show degradation in SNR at higher ambient temperatures, which may be due to changes in the down-track profile at the track edges compared with track center. CBD as a function of cross-track position is also calculated for both modeling and spin-stand measurements. The CBD widening at high cross-track offset, which is observed at both measurement and model, was directly related to the radius of curvature of the written transitions observed in the model and the thermal profiles used.
The inevitable temperature raise leads to the demagnetization of permanent magnet synchronous motor (PMSM), that is undesirable in the application of electrical vehicle. This paper presents a nonlinear demagnetization model taking into account temperature with the Wiener structure and neural network characteristics. The remanence and intrinsic coercivity are chosen as intermediate variables, thus the relationship between motor temperature and maximal permanent magnet flux is described by the proposed neural Wiener model. Simulation and experimental results demonstrate the precision of temperature dependent demagnetization model. This work makes the basis of temperature compensation for the output torque from PMSM.