Visible to the public Biblio

Filters: Keyword is optimization problems  [Clear All Filters]
2020-04-13
Wang, Shaoyang, Lv, Tiejun, Zhang, Xuewei.  2019.  Multi-Agent Reinforcement Learning-Based User Pairing in Multi-Carrier NOMA Systems. 2019 IEEE International Conference on Communications Workshops (ICC Workshops). :1–6.
This paper investigates the problem of user pairing in multi-carrier non-orthogonal multiple access (MC-NOMA) systems. Firstly, the hard channel capacity and soft channel capacity are presented. The former depicts the transmission capability of the system that depends on the channel conditions, and the latter refers to the effective throughput of the system that is determined by the actual user demands. Then, two optimization problems to maximize the hard and soft channel capacities are established, respectively. Inspired by the multiagent deep reinforcement learning (MADRL) and convolutional neural network, the user paring network (UP-Net), based on the cooperative game and deep deterministic policy gradient, is designed for solving the optimization problems. Simulation results demonstrate that the performance of the designed UP-Net is comparable to that obtained from the exhaustive search method via the end-to-end low complexity method, which is superior to the common method, and corroborate that the UP-Net focuses more on the actual user demands to improve the soft channel capacity. Additionally and more importantly, the paper makes a useful exploration on the use of MADRL to solve the resource allocation problems in communication systems. Meanwhile, the design method has strong universality and can be easily extended to other issues.
2020-02-17
Chalise, Batu K..  2019.  ADMM-based Beamforming Optimization for Physical Layer Security in a Full-duplex Relay System. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :4734–4738.
Although beamforming optimization problems in full-duplex communication systems can be optimally solved with the semidefinite relaxation (SDR) approach, its computational complexity increases rapidly when the problem size increases. In order to circumvent this issue, in this paper, we propose an alternating direction of multiplier method (ADMM) which minimizes the augmented Lagrangian of the dual of the SDR and handles the inequality constraints with the use of slack variables. The proposed ADMM is then applied for optimizing the relay beamformer to maximize the secrecy rate. Simulation results show that the proposed ADMM performs as good as the SDR approach.
2020-01-20
Vu, Thang X., Vu, Trinh Anh, Lei, Lei, Chatzinotas, Symeon, Ottersten, Björn.  2019.  Linear Precoding Design for Cache-aided Full-duplex Networks. 2019 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.
Edge caching has received much attention as a promising technique to overcome the stringent latency and data hungry challenges in the future generation wireless networks. Meanwhile, full-duplex (FD) transmission can potentially double the spectral efficiency by allowing a node to receive and transmit simultaneously. In this paper, we study a cache-aided FD system via delivery time analysis and optimization. In the considered system, an edge node (EN) operates in FD mode and serves users via wireless channels. Two optimization problems are formulated to minimize the largest delivery time based on the two popular linear beamforming zero-forcing and minimum mean square error designs. Since the formulated problems are non-convex due to the self-interference at the EN, we propose two iterative optimization algorithms based on the inner approximation method. The convergence of the proposed iterative algorithms is analytically guaranteed. Finally, the impacts of caching and the advantages of the FD system over the half-duplex (HD) counterpart are demonstrated via numerical results.
2019-10-08
Arslan, B., Ulker, M., Akleylek, S., Sagiroglu, S..  2018.  A Study on the Use of Quantum Computers, Risk Assessment and Security Problems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

In the computer based solutions of the problems in today's world; if the problem has a high complexity value, different requirements can be addressed such as necessity of simultaneous operation of many computers, the long processing times for the operation of algorithms, and computers with hardware features that can provide high performance. For this reason, it is inevitable to use a computer based on quantum physics in the near future in order to make today's cryptosystems unsafe, search the servers and other information storage centers on internet very quickly, solve optimization problems in the NP-hard category with a very wide solution space and analyze information on large-scale data processing and to process high-resolution image for artificial intelligence applications. In this study, an examination of quantum approaches and quantum computers, which will be widely used in the near future, was carried out and the areas in which such innovation can be used was evaluated. Malicious or non-malicious use of quantum computers with this capacity, the advantages and disadvantages of the high performance which it provides were examined under the head of security, the effect of this recent technology on the existing security systems was investigated.

2015-04-30
Qingshan Liu, Tingwen Huang, Jun Wang.  2014.  One-Layer Continuous-and Discrete-Time Projection Neural Networks for Solving Variational Inequalities and Related Optimization Problems. Neural Networks and Learning Systems, IEEE Transactions on. 25:1308-1318.

This paper presents one-layer projection neural networks based on projection operators for solving constrained variational inequalities and related optimization problems. Sufficient conditions for global convergence of the proposed neural networks are provided based on Lyapunov stability. Compared with the existing neural networks for variational inequalities and optimization, the proposed neural networks have lower model complexities. In addition, some improved criteria for global convergence are given. Compared with our previous work, a design parameter has been added in the projection neural network models, and it results in some improved performance. The simulation results on numerical examples are discussed to demonstrate the effectiveness and characteristics of the proposed neural networks.