Visible to the public Biblio

Filters: Keyword is heterogeneity  [Clear All Filters]
2022-08-26
Zhang, Yibo.  2021.  A Systematic Security Design Approach for Heterogeneous Embedded Systems. 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE). :500–502.
Security has become a significant factor of Internet of Things (IoT) and Cyber Physical Systems (CPS) wherein the devices usually vary in computing power and intrinsic hardware features. It is necessary to use security-by-design method in the development of these systems. This paper focuses on the security design issue about this sort of heterogeneous embedded systems and proposes a systematic approach aiming to achieve optimal security design objective.
2022-06-06
Nguyen, Vu, Cabrera, Juan A., Pandi, Sreekrishna, Nguyen, Giang T., Fitzek, Frank H. P..  2020.  Exploring the Benefits of Memory-Limited Fulcrum Recoding for Heterogeneous Nodes. GLOBECOM 2020 - 2020 IEEE Global Communications Conference. :1–6.
Fulcrum decoders can trade off between computational complexity and the number of received packets. This allows heterogeneous nodes to decode at different level of complexity in accordance with their computing power. Variations of Fulcrum codes, like dynamic sparsity and expansion packets (DSEP) have significantly reduced the encoders and decoders' complexity by using dynamic sparsity and expansion packets. However, limited effort had been done for recoders of Fulcrum codes and their variations, limiting their full potential when being deployed at multi-hop networks. In this paper, we investigate the drawback of the conventional Fulcrum recoding and introduce a novel recoding scheme for the family of Fulcrum codes by limiting the buffer size, and thus memory needs. Our evaluations indicate that DSEP recoding mechamism increases the recoding goodput by 50%, and reduces the decoding overhead by 60%-90% while maintaining high decoding goodput at receivers and small memory usage at recoders compared with the conventional Fulcrum recoding. This further reduces the resources needed for Fulcrum codes at the recoders.
2020-11-30
Cheng, D., Zhou, X., Ding, Z., Wang, Y., Ji, M..  2019.  Heterogeneity Aware Workload Management in Distributed Sustainable Datacenters. IEEE Transactions on Parallel and Distributed Systems. 30:375–387.
The tremendous growth of cloud computing and large-scale data analytics highlight the importance of reducing datacenter power consumption and environmental impact of brown energy. While many Internet service operators have at least partially powered their datacenters by green energy, it is challenging to effectively utilize green energy due to the intermittency of renewable sources, such as solar or wind. We find that the geographical diversity of internet-scale services can be carefully scheduled to improve the efficiency of applying green energy in datacenters. In this paper, we propose a holistic heterogeneity-aware cloud workload management approach, sCloud, that aims to maximize the system goodput in distributed self-sustainable datacenters. sCloud adaptively places the transactional workload to distributed datacenters, allocates the available resource to heterogeneous workloads in each datacenter, and migrates batch jobs across datacenters, while taking into account the green power availability and QoS requirements. We formulate the transactional workload placement as a constrained optimization problem that can be solved by nonlinear programming. Then, we propose a batch job migration algorithm to further improve the system goodput when the green power supply varies widely at different locations. Finally, we extend sCloud by integrating a flexible batch job manager to dynamically control the job execution progress without violating the deadlines. We have implemented sCloud in a university cloud testbed with real-world weather conditions and workload traces. Experimental results demonstrate sCloud can achieve near-to-optimal system performance while being resilient to dynamic power availability. sCloud with the flexible batch job management approach outperforms a heterogeneity-oblivious approach by 37 percent in improving system goodput and 33 percent in reducing QoS violations.
2019-08-26
Ozeer, Umar, Etchevers, Xavier, Letondeur, Loïc, Ottogalli, Fran\c cois-Gaël, Salaün, Gwen, Vincent, Jean-Marc.  2018.  Resilience of Stateful IoT Applications in a Dynamic Fog Environment. Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. :332-341.

Fog computing provides computing, storage and communication resources at the edge of the network, near the physical world. Subsequently, end devices nearing the physical world can have interesting properties such as short delays, responsiveness, optimized communications and privacy. However, these end devices have low stability and are prone to failures. There is consequently a need for failure management protocols for IoT applications in the Fog. The design of such solutions is complex due to the specificities of the environment, i.e., (i) dynamic infrastructure where entities join and leave without synchronization, (ii) high heterogeneity in terms of functions, communication models, network, processing and storage capabilities, and, (iii) cyber-physical interactions which introduce non-deterministic and physical world's space and time dependent events. This paper presents a fault tolerance approach taking into account these three characteristics of the Fog-IoT environment. Fault tolerance is achieved by saving the state of the application in an uncoordinated way. When a failure is detected, notifications are propagated to limit the impact of failures and dynamically reconfigure the application. Data stored during the state saving process are used for recovery, taking into account consistency with respect to the physical world. The approach was validated through practical experiments on a smart home platform.

2017-12-28
Liu, X., Leon-Garcia, A., Zhu, P..  2017.  A distributed software-defined multi-agent architecture for unifying IoT applications. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :49–55.

During the development and expansion of Internet of Things (IoT), main challenges needing to be addressed are the heterogeneity, interoperability, scalability, flexibility and security of IoT applications. In this paper, we view IoT as a large-scale distributed cyber-physical-social complex network. From that perspective, the above challenges are analyzed. Then, we propose a distributed multi-agent architecture to unify numbers of different IoT applications by designing the software-defined sensors, auctuators and controllers. Furthermore, we analyze the proposed architecture and clarify why and how it can tackle the heterogeneity of IoT applications, enable them to interoperate with each other, make it efficient to introduce new applications, and enhance the flexibility and security of different applications. Finally, the use case of smart home with multiple applications is applied to verify the feasibility of the proposed solution for IoT architecture.

2017-12-12
Zhu, X., Badr, Y., Pacheco, J., Hariri, S..  2017.  Autonomic Identity Framework for the Internet of Things. 2017 International Conference on Cloud and Autonomic Computing (ICCAC). :69–79.

The Internet of Things (IoT) will connect not only computers and mobile devices, but it will also interconnect smart buildings, houses, and cities, as well as electrical grids, gas plants, and water networks, automobiles, airplanes, etc. IoT will lead to the development of a wide range of advanced information services that are pervasive, cost-effective, and can be accessed from anywhere and at any time. However, due to the exponential number of interconnected devices, cyber-security in the IoT is a major challenge. It heavily relies on the digital identity concept to build security mechanisms such as authentication and authorization. Current centralized identity management systems are built around third party identity providers, which raise privacy concerns and present a single point of failure. In addition, IoT unconventional characteristics such as scalability, heterogeneity and mobility require new identity management systems to operate in distributed and trustless environments, and uniquely identify a particular device based on its intrinsic digital properties and its relation to its human owner. In order to deal with these challenges, we present a Blockchain-based Identity Framework for IoT (BIFIT). We show how to apply our BIFIT to IoT smart homes to achieve identity self-management by end users. In the context of smart home, the framework autonomously extracts appliances signatures and creates blockchain-based identifies for their appliance owners. It also correlates appliances signatures (low level identities) and owners identifies in order to use them in authentication credentials and to make sure that any IoT entity is behaving normally.