Visible to the public Biblio

Filters: Keyword is semantic analysis  [Clear All Filters]
2022-05-19
Wu, Juan.  2021.  Long Text Filtering in English Translation based on LSTM Semantic Association. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :740–743.
Translation studies is one of the fastest growing interdisciplinary research fields in the world today. Business English is an urgent research direction in the field of translation studies. To some extent, the quality of business English translation directly determines the success or failure of international trade and the economic benefits. On the basis of sequence information encoding and decoding model of LSTM, this paper proposes a strategy combining attention mechanism with bidirectional LSTM model to handle the question of feature extraction of text information. The proposed method reduces the semantic complexity and improves the overall correlation accuracy. The experimental results show its advantages.
2021-01-28
Wang, W., Tang, B., Zhu, C., Liu, B., Li, A., Ding, Z..  2020.  Clustering Using a Similarity Measure Approach Based on Semantic Analysis of Adversary Behaviors. 2020 IEEE Fifth International Conference on Data Science in Cyberspace (DSC). :1—7.

Rapidly growing shared information for threat intelligence not only helps security analysts reduce time on tracking attacks, but also bring possibilities to research on adversaries' thinking and decisions, which is important for the further analysis of attackers' habits and preferences. In this paper, we analyze current models and frameworks used in threat intelligence that suited to different modeling goals, and propose a three-layer model (Goal, Behavior, Capability) to study the statistical characteristics of APT groups. Based on the proposed model, we construct a knowledge network composed of adversary behaviors, and introduce a similarity measure approach to capture similarity degree by considering different semantic links between groups. After calculating similarity degrees, we take advantage of Girvan-Newman algorithm to discover community groups, clustering result shows that community structures and boundaries do exist by analyzing the behavior of APT groups.

2020-11-20
Moghaddam, F. F., Wieder, P., Yahyapour, R., Khodadadi, T..  2018.  A Reliable Ring Analysis Engine for Establishment of Multi-Level Security Management in Clouds. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). :1—5.
Security and Privacy challenges are the most obstacles for the advancement of cloud computing and the erosion of trust boundaries already happening in organizations is amplified and accelerated by this emerging technology. Policy Management Frameworks are the most proper solutions to create dedicated security levels based on the sensitivity of resources and according to the mapping process between requirements cloud customers and capabilities of service providers. The most concerning issue in these frameworks is the rate of perfect matches between capabilities and requirements. In this paper, a reliable ring analysis engine has been introduced to efficiently map the security requirements of cloud customers to the capabilities of service provider and to enhance the rate of perfect matches between them for establishment of different security levels in clouds. In the suggested model a structural index has been introduced to receive the requirement and efficiently map them to the most proper security mechanism of the service provider. Our results show that this index-based engine enhances the rate of perfect matches considerably and decreases the detected conflicts in syntactic and semantic analysis.
2020-09-21
Takahashi, Hironao, Lakhani, Uzair.  2019.  Multiple Layered Security Analyses Method for Cryptocurrency Exchange Servicers. 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE). :71–73.
Internet is a common method of trading business today. The usage of cryptocurrencies has increased these days and it has become a trend to utilize them. Cryptocurrency exchange servicers provide different smartphone apps that unfortunately may become the target of malicious attacks. This paper focuses on how it achieves highest security and proposes the multiple layered security analyses method for cryptocurrency exchange servicers.
2018-07-18
Yusheng, W., Kefeng, F., Yingxu, L., Zenghui, L., Ruikang, Z., Xiangzhen, Y., Lin, L..  2017.  Intrusion Detection of Industrial Control System Based on Modbus TCP Protocol. 2017 IEEE 13th International Symposium on Autonomous Decentralized System (ISADS). :156–162.

Modbus over TCP/IP is one of the most popular industrial network protocol that are widely used in critical infrastructures. However, vulnerability of Modbus TCP protocol has attracted widely concern in the public. The traditional intrusion detection methods can identify some intrusion behaviors, but there are still some problems. In this paper, we present an innovative approach, SD-IDS (Stereo Depth IDS), which is designed for perform real-time deep inspection for Modbus TCP traffic. SD-IDS algorithm is composed of two parts: rule extraction and deep inspection. The rule extraction module not only analyzes the characteristics of industrial traffic, but also explores the semantic relationship among the key field in the Modbus TCP protocol. The deep inspection module is based on rule-based anomaly intrusion detection. Furthermore, we use the online test to evaluate the performance of our SD-IDS system. Our approach get a low rate of false positive and false negative.

2018-01-10
Meltsov, V. Y., Lesnikov, V. A., Dolzhenkova, M. L..  2017.  Intelligent system of knowledge control with the natural language user interface. 2017 International Conference "Quality Management,Transport and Information Security, Information Technologies" (IT QM IS). :671–675.
This electronic document is a “live” template and already defines the components of your paper [title, text, heads, etc.] in its style sheet. The paper considers the possibility and necessity of using in modern control and training systems with a natural language interface methods and mechanisms, characteristic for knowledge processing systems. This symbiosis assumes the introduction of specialized inference machines into the testing systems. For the effective operation of such an intelligent interpreter, it is necessary to “translate” the user's answers into one of the known forms of the knowledge representation, for example, into the expressions (rules) of the first-order predicate calculus. A lexical processor, performing morphological, syntactic and semantic analysis, solves this task. To simplify further work with the rules, the Skolem-transformation is used, which allows to get rid of quantifiers and to present semantic structures in the form of sequents (clauses, disjuncts). The basic principles of operation of the inference machine are described, which is the main component of the developed intellectual subsystem. To improve the performance of the machine, one of the fastest methods was chosen - a parallel method of deductive inference based on the division of clauses. The parallelism inherent in the method, and the use of the dataflow architecture, allow parallel computations in the output machine to be implemented without additional effort on the part of the programmer. All this makes it possible to reduce the time for comparing the sequences stored in the knowledge base by several times as compared to traditional inference mechanisms that implement various versions of the principle of resolutions. Formulas and features of the technique of numerical estimation of the user's answers are given. In general, the development of the human-computer dialogue capabilities in test systems- through the development of a specialized module for processing knowledge, will increase the intelligence of such systems and allow us to directly consider the semantics of sentences, more accurately determine the relevance of the user's response to standard knowledge and, ultimately, get rid of the skeptical attitude of many managers to machine testing systems.
2017-12-12
Ogiela, L., Ogiela, M. R..  2017.  Insider Threats and Cryptographic Techniques in Secure Information Management. IEEE Systems Journal. 11:405–414.

This publication presents some techniques for insider threats and cryptographic protocols in secure processes. Those processes are dedicated to the information management of strategic data splitting. Strategic data splitting is dedicated to enterprise management processes as well as methods of securely storing and managing this type of data. Because usually strategic data are not enough secure and resistant for unauthorized leakage, we propose a new protocol that allows to protect data in different management structures. The presented data splitting techniques will concern cryptographic information splitting algorithms, as well as data sharing algorithms making use of cognitive data analysis techniques. The insider threats techniques will concern data reconstruction methods and cognitive data analysis techniques. Systems for the semantic analysis and secure information management will be used to conceal strategic information about the condition of the enterprise. Using the new approach, which is based on cognitive systems allow to guarantee the secure features and make the management processes more efficient.