Visible to the public Biblio

Found 288 results

Filters: Keyword is artificial intelligence  [Clear All Filters]
2022-01-10
Mehra, Ankush, Badotra, Sumit.  2021.  Artificial Intelligence Enabled Cyber Security. 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC). :572–575.
In the digital era, cyber security has become a serious problem. Information penetrates, wholesale fraud, manual human test breaking, and other comparable occurrences proliferate, influencing a large number of individuals just as organizations. The hindrances have consistently been endless in creating appropriate controls and procedures and putting them in place with utmost precision in order to deal with cyber-attacks. To recent developments in artificial intelligence, the danger of cyber - attacks has increased drastically. AI has affected everything from healthcare to robots. Because malicious hackers couldn't keep this ball of fire from them, ``normal'' cyber-attacks have grown in to the ``intelligent'' cyber attacks. In this paper, The most promising artificial intelligence approaches are discussed. Researchers look at how such techniques may be used for cyber security. At last, the conversation concludes with a discussion about artificial intelligence's future and cyber security.
Al-Ameer, Ali, AL-Sunni, Fouad.  2021.  A Methodology for Securities and Cryptocurrency Trading Using Exploratory Data Analysis and Artificial Intelligence. 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA). :54–61.
This paper discusses securities and cryptocurrency trading using artificial intelligence (AI) in the sense that it focuses on performing Exploratory Data Analysis (EDA) on selected technical indicators before proceeding to modelling, and then to develop more practical models by introducing new reward loss function that maximizes the returns during training phase. The results of EDA reveal that the complex patterns within the data can be better captured by discriminative classification models and this was endorsed by performing back-testing on two securities using Artificial Neural Network (ANN) and Random Forests (RF) as discriminative models against their counterpart Na\"ıve Bayes as a generative model. To enhance the learning process, the new reward loss function is utilized to retrain the ANN with testing on AAPL, IBM, BRENT CRUDE and BTC using auto-trading strategy that serves as the intelligent unit, and the results indicate this loss superiorly outperforms the conventional cross-entropy used in predictive models. The overall results of this work suggest that there should be larger focus on EDA and more practical losses in the research of machine learning modelling for stock market prediction applications.
Ren, Sothearin, Kim, Jae-Sung, Cho, Wan-Sup, Soeng, Saravit, Kong, Sovanreach, Lee, Kyung-Hee.  2021.  Big Data Platform for Intelligence Industrial IoT Sensor Monitoring System Based on Edge Computing and AI. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :480–482.
The cutting edge of Industry 4.0 has driven everything to be converted to disruptive innovation and digitalized. This digital revolution is imprinted by modern and advanced technology that takes advantage of Big Data and Artificial Intelligence (AI) to nurture from automatic learning systems, smart city, smart energy, smart factory to the edge computing technology, and so on. To harness an appealing, noteworthy, and leading development in smart manufacturing industry, the modern industrial sciences and technologies such as Big Data, Artificial Intelligence, Internet of things, and Edge Computing have to be integrated cooperatively. Accordingly, a suggestion on the integration is presented in this paper. This proposed paper describes the design and implementation of big data platform for intelligence industrial internet of things sensor monitoring system and conveys a prediction of any upcoming errors beforehand. The architecture design is based on edge computing and artificial intelligence. To extend more precisely, industrial internet of things sensor here is about the condition monitoring sensor data - vibration, temperature, related humidity, and barometric pressure inside facility manufacturing factory.
Alamaniotis, Miltiadis.  2021.  Fuzzy Integration of Kernel-Based Gaussian Processes Applied to Anomaly Detection in Nuclear Security. 2021 12th International Conference on Information, Intelligence, Systems Applications (IISA). :1–4.
Advances in artificial intelligence (AI) have provided a variety of solutions in several real-world complex problems. One of the current trends contains the integration of various AI tools to improve the proposed solutions. The question that has to be revisited is how tools may be put together to form efficient systems suitable for the problem at hand. This paper frames itself in the area of nuclear security where an agent uses a radiation sensor to survey an area for radiological threats. The main goal of this application is to identify anomalies in the measured data that designate the presence of nuclear material that may consist of a threat. To that end, we propose the integration of two kernel modeled Gaussian processes (GP) by using a fuzzy inference system. The GP models utilize different types of information to make predictions of the background radiation contribution that will be used to identify an anomaly. The integration of the prediction of the two GP models is performed with means of fuzzy rules that provide the degree of existence of anomalous data. The proposed system is tested on a set of real-world gamma-ray spectra taken with a low-resolution portable radiation spectrometer.
Hu, Guangjun, Li, Haiwei, Li, Kun, Wang, Rui.  2021.  A Network Asset Detection Scheme Based on Website Icon Intelligent Identification. 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :255–257.
With the rapid development of the Internet and communication technologies, efficient management of cyberspace, safe monitoring and protection of various network assets can effectively improve the overall level of network security protection. Accurate, effective and comprehensive network asset detection is the prerequisite for effective network asset management, and it is also the basis for security monitoring and analysis. This paper proposed an artificial intelligence algorithm based scheme which accurately identify the website icon and help to determine the ownership of network assets. Through experiments based on data set collected from real network, the result demonstrate that the proposed scheme has higher accuracy and lower false alarm rate, and can effectively reduce the training cost.
Li, Yanjie.  2021.  The Application Analysis of Artificial Intelligence in Computer Network Technology. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1126–1129.
In the information age, computer network technology has covered different areas of social life and involved various fields, and artificial intelligence, as an emerging technology with a very rapid development momentum in recent years, is important in promoting the development of computer network systems. This article explains the concept of artificial intelligence technology, describes the problems faced by computer networks, further analyses the advantages of artificial intelligence and the inevitability of application in network technology, and then studies the application of artificial intelligence in computer network technology.
Vast, Rahul, Sawant, Shruti, Thorbole, Aishwarya, Badgujar, Vishal.  2021.  Artificial Intelligence Based Security Orchestration, Automation and Response System. 2021 6th International Conference for Convergence in Technology (I2CT). :1–5.
Cybersecurity is becoming very crucial in the today's world where technology is now not limited to just computers, smartphones, etc. It is slowly entering into things that are used on daily basis like home appliances, automobiles, etc. Thus, opening a new door for people with wrong intent. With the increase in speed of technology dealing with such issues also requires quick response from security people. Thus, dealing with huge variety of devices quickly will require some extent of automation in this field. Generating threat intelligence automatically and also including those which are multilingual will also add plus point to prevent well known major attacks. Here we are proposing an AI based SOAR system in which the data from various sources like firewalls, IDS, etc. is collected with individual event profiling using a deep-learning detection method. For this the very first step is that the collected data from different sources will be converted into a standardized format i.e. to categorize the data collected from different sources. For standardized format Here our system finds out about the true positive alert for which the appropriate/ needful steps will be taken such as the generation of Indicators of Compromise report and the additional evidences with the help of Security Information and Event Management system. The security alerts will be notified to the security teams with the degree of threat.
He, Zewei.  2021.  Communication Engineering Application System Based on Artificial Intelligence Technology. 2021 6th International Conference on Smart Grid and Electrical Automation (ICSGEA). :366–369.
In order to overcome a series of problems in the application process of traditional communication engineering in the new era, such as information security, this paper proposes a novel communication engineering application system based on artificial intelligence technology. The application system fully combines the artificial intelligence technology, and applies the artificial intelligence thinking to the reform of traditional communication engineering. Based on this, the application strategy also fully combines the application and development of 5g technology, and strengthens the security of communication engineering in the application process from many aspects. The results show that the application system can give full play to the role of artificial intelligence technology and improve the security of communication process as much as possible, which lays a good foundation for the further development of 5g technology.
Xu, Ling.  2021.  Application of Artificial Intelligence and Big Data in the Security of Regulatory Places. 2021 International Conference on Artificial Intelligence and Electromechanical Automation (AIEA). :210–213.
This paper analyzes the necessity of artificial intelligence and big data in the security application of regulatory places. The author studies the specific application of artificial intelligence and big data in ideological dynamics management, access control system, video surveillance system, emergency alarm system, perimeter control system, police inspection system, daily behavior management, and system implementation management. The author puts forward how to do technical integration, improve information sharing, strengthen the construction of talents, and increase management fund expenditure. The purpose of this paper is to enhance the security management level of regulatory places and optimize the management environment of regulatory places.
Viktoriia, Hrechko, Hnatienko, Hrygorii, Babenko, Tetiana.  2021.  An Intelligent Model to Assess Information Systems Security Level. 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4). :128–133.

This research presents a model for assessing information systems cybersecurity maturity level. The main purpose of the model is to provide comprehensive support for information security specialists and auditors in checking information systems security level, checking security policy implementation, and compliance with security standards. The model synthesized based on controls and practices present in ISO 27001 and ISO 27002 and the neural network of direct signal propagation. The methodology described in this paper can also be extended to synthesis a model for different security control sets and, consequently, to verify compliance with another security standard or policy. The resulting model describes a real non-automated process of assessing the maturity of an IS at an acceptable level and it can be recommended to be used in the process of real audit of Information Security Management Systems.

2021-12-22
Malhotra, Diksha, Srivastava, Shubham, Saini, Poonam, Singh, Awadhesh Kumar.  2021.  Blockchain Based Audit Trailing of XAI Decisions: Storing on IPFS and Ethereum Blockchain. 2021 International Conference on COMmunication Systems NETworkS (COMSNETS). :1–5.
Explainable Artificial Intelligence (XAI) generates explanations which are used by regulators to audit the responsibility in case of any catastrophic failure. These explanations are currently stored in centralized systems. However, due to lack of security and traceability in centralized systems, the respective owner may temper the explanations for his convenience in order to avoid any penalty. Nowadays, Blockchain has emerged as one of the promising technologies that might overcome the security limitations. Hence, in this paper, we propose a novel Blockchain based framework for proof-of-authenticity pertaining to XAI decisions. The framework stores the explanations in InterPlanetary File System (IPFS) due to storage limitations of Ethereum Blockchain. Further, a Smart Contract is designed and deployed in order to supervise the storage and retrieval of explanations from Ethereum Blockchain. Furthermore, to induce cryptographic security in the network, an explanation's hash is calculated and stored in Blockchain too. Lastly, we perform the cost and security analysis of our proposed system.
Murray, Bryce, Anderson, Derek T., Havens, Timothy C..  2021.  Actionable XAI for the Fuzzy Integral. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). :1–8.
The adoption of artificial intelligence (AI) into domains that impact human life (healthcare, agriculture, security and defense, etc.) has led to an increased demand for explainable AI (XAI). Herein, we focus on an under represented piece of the XAI puzzle, information fusion. To date, a number of low-level XAI explanation methods have been proposed for the fuzzy integral (FI). However, these explanations are tailored to experts and its not always clear what to do with the information they return. In this article we review and categorize existing FI work according to recent XAI nomenclature. Second, we identify a set of initial actions that a user can take in response to these low-level statistical, graphical, local, and linguistic XAI explanations. Third, we investigate the design of an interactive user friendly XAI report. Two case studies, one synthetic and one real, show the results of following recommended actions to understand and improve tasks involving classification.
2021-12-20
Kanade, Vijay A..  2021.  Securing Drone-based Ad Hoc Network Using Blockchain. 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). :1314–1318.
The research proposal discloses a novel drone-based ad-hoc network that leverages acoustic information for power plant surveillance and utilizes a secure blockchain model for protecting the integrity of drone communication over the network. The paper presents a vision for the drone-based networks, wherein drones are employed for monitoring the complex power plant machinery. The drones record acoustic information generated by the power plants and detect anomalies or deviations in machine behavior based on collected acoustic data. The drones are linked to distributed network of computing devices in possession with the plant stakeholders, wherein each computing device maintains a chain of data blocks. The chain of data blocks represents one or more transactions associated with power plants, wherein transactions are related to high risk auditory data set accessed by the drones in an event of anomaly or machine failure. The computing devices add at least one data block to the chain of data blocks in response to valid transaction data, wherein the transaction data is validated by the computing devices owned by power plant personnel.
Meier, Roland, Lavrenovs, Arturs, Heinäaro, Kimmo, Gambazzi, Luca, Lenders, Vincent.  2021.  Towards an AI-powered Player in Cyber Defence Exercises. 2021 13th International Conference on Cyber Conflict (CyCon). :309–326.
Cyber attacks are becoming increasingly frequent, sophisticated, and stealthy. This makes it harder for cyber defence teams to keep up, forcing them to automate their defence capabilities in order to improve their reactivity and efficiency. Therefore, we propose a fully automated cyber defence framework that no longer needs support from humans to detect and mitigate attacks within a complex infrastructure. We design our framework based on a real-world case - Locked Shields - the world's largest cyber defence exercise. In this exercise, teams have to defend their networked infrastructure against attacks, while maintaining operational services for their users. Our framework architecture connects various cyber sensors with network, device, application, and user actuators through an artificial intelligence (AI)-powered automated team in order to dynamically secure the cyber environment. To the best of our knowledge, our framework is the first attempt towards a fully automated cyber defence team that aims at protecting complex environments from sophisticated attacks.
2021-11-29
Yin, Yifei, Zulkernine, Farhana, Dahan, Samuel.  2020.  Determining Worker Type from Legal Text Data Using Machine Learning. 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). :444–450.
This project addresses a classic employment law question in Canada and elsewhere using machine learning approach: how do we know whether a worker is an employee or an independent contractor? This is a central issue for self-represented litigants insofar as these two legal categories entail very different rights and employment protections. In this interdisciplinary research study, we collaborated with the Conflict Analytics Lab to develop machine learning models aimed at determining whether a worker is an employee or an independent contractor. We present a number of supervised learning models including a neural network model that we implemented using data labeled by law researchers and compared the accuracy of the models. Our neural network model achieved an accuracy rate of 91.5%. A critical discussion follows to identify the key features in the data that influence the accuracy of our models and provide insights about the case outcomes.
2021-11-08
Marino, Daniel L., Grandio, Javier, Wickramasinghe, Chathurika S., Schroeder, Kyle, Bourne, Keith, Filippas, Afroditi V., Manic, Milos.  2020.  AI Augmentation for Trustworthy AI: Augmented Robot Teleoperation. 2020 13th International Conference on Human System Interaction (HSI). :155–161.
Despite the performance of state-of-the-art Artificial Intelligence (AI) systems, some sectors hesitate to adopt AI because of a lack of trust in these systems. This attitude is prevalent among high-risk areas, where there is a reluctance to remove humans entirely from the loop. In these scenarios, Augmentation provides a preferred alternative over complete Automation. Instead of replacing humans, AI Augmentation uses AI to improve and support human operations, creating an environment where humans work side by side with AI systems. In this paper, we discuss how AI Augmentation can provide a path for building Trustworthy AI. We exemplify this approach using Robot Teleoperation. We lay out design guidelines and motivations for the development of AI Augmentation for Robot Teleoperation. Finally, we discuss the design of a Robot Teleoperation testbed for the development of AI Augmentation systems.
He, Hongmei, Gray, John, Cangelosi, Angelo, Meng, Qinggang, McGinnity, T. M., Mehnen, Jörn.  2020.  The Challenges and Opportunities of Artificial Intelligence for Trustworthy Robots and Autonomous Systems. 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE). :68–74.
Trust is essential in designing autonomous and semiautonomous Robots and Autonomous Systems (RAS), because of the ``No trust, no use'' concept. RAS should provide high quality services, with four key properties that make them trustworthy: they must be (i) robust with regards to any system health related issues, (ii) safe for any matters in their surrounding environments, (iii) secure against any threats from cyber spaces, and (iv) trusted for human-machine interaction. This article thoroughly analyses the challenges in implementing the trustworthy RAS in respects of the four properties, and addresses the power of AI in improving the trustworthiness of RAS. While we focus on the benefits that AI brings to human, we should realize the potential risks that could be caused by AI. This article introduces for the first time the set of key aspects of human-centered AI for RAS, which can serve as a cornerstone for implementing trustworthy RAS by design in the future.
Vasilyev, Vladimir, Shamsutdinov, Rinat.  2020.  Security Analysis of Wireless Sensor Networks Using SIEM and Multi-Agent Approach. 2020 Global Smart Industry Conference (GloSIC). :291–296.
The paper addresses the issue of providing information security to wireless sensor networks using Security Information and Event Management (SIEM) methodology along with multi-agent approach. The concept of wireless sensor networks and providing their information security, including construction of SIEM system architecture, SIEM analysis methodologies and its main features, are considered. The proposed approach is to integrate SIEM system methodology with a multi-agent architecture which includes data collecting agents, coordinating agent (supervisor) and local Intrusion Detection Systems (IDSs) based on artificial immune system mechanisms. Each IDS is used as an agent that performs a primary analysis and sends information about suspicious activity to the server. The server performs correlation analysis, identifies the most significant incidents, and helps to prioritize the incident response. The presented results of computational experiments confirm the effectiveness of the proposed approach.
2021-10-12
Ferraro, Angelo.  2020.  When AI Gossips. 2020 IEEE International Symposium on Technology and Society (ISTAS). :69–71.
The concept of AI Gossip is presented. It is analogous to the traditional understanding of a pernicious human failing. It is made more egregious by the technology of AI, internet, current privacy policies, and practices. The recognition by the technological community of its complacency is critical to realizing its damaging influence on human rights. A current example from the medical field is provided to facilitate the discussion and illustrate the seriousness of AI Gossip. Further study and model development is encouraged to support and facilitate the need to develop standards to address the implications and consequences to human rights and dignity.
2021-10-04
Ding, Lei, Wang, Shida, Wan, Renzhuo, Zhou, Guopeng.  2020.  Securing core information sharing and exchange by blockchain for cooperative system. 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). :579–583.
The privacy protection and information security are two crucial issues for future advanced artificial intelligence devices, especially for cooperative system with rich core data exchange which may offer opportunities for attackers to fake interaction messages. To combat such threat, great efforts have been made by introducing trust mechanism in initiative or passive way. Furthermore, blockchain and distributed ledger technology provide a decentralized and peer-to-peer network, which has great potential application for multi-agent system, such as IoTs and robots. It eliminates third-party interference and data in the blockchain are stored in an encrypted way permanently and anti-destroys. In this paper, a methodology of blockchain is proposed and designed for advanced cooperative system with artificial intelligence to protect privacy and sensitive data exchange between multi-agents. The validation procedure is performed in laboratory by a three-level computing networks of Raspberry Pi 3B+, NVIDIA Jetson Tx2 and local computing server for a robot system with four manipulators and four binocular cameras in peer computing nodes by Go language.
2021-09-21
Lin, Kuang-Yao, Huang, Wei-Ren.  2020.  Using Federated Learning on Malware Classification. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :585–589.
In recent years, everything has been more and more systematic, and it would generate many cyber security issues. One of the most important of these is the malware. Modern malware has switched to a high-growth phase. According to the AV-TEST Institute showed that there are over 350,000 new malicious programs (malware) and potentially unwanted applications (PUA) be registered every day. This threat was presented and discussed in the present paper. In addition, we also considered data privacy by using federated learning. Feature extraction can be performed based on malware. The proposed method achieves very high accuracy ($\approx$0.9167) on the dataset provided by VirusTotal.
2021-09-07
Simud, Thikamporn, Ruengittinun, Somchoke, Surasvadi, Navaporn, Sanglerdsinlapachai, Nuttapong, Plangprasopchok, Anon.  2020.  A Conversational Agent for Database Query: A Use Case for Thai People Map and Analytics Platform. 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP). :1–6.
Since 2018, Thai People Map and Analytics Platform (TPMAP) has been developed with the aims of supporting government officials and policy makers with integrated household and community data to analyze strategic plans, implement policies and decisions to alleviate poverty. However, to acquire complex information from the platform, non-technical users with no database background have to ask a programmer or a data scientist to query data for them. Such a process is time-consuming and might result in inaccurate information retrieved due to miscommunication between non-technical and technical users. In this paper, we have developed a Thai conversational agent on top of TPMAP to support self-service data analytics on complex queries. Users can simply use natural language to fetch information from our chatbot and the query results are presented to users in easy-to-use formats such as statistics and charts. The proposed conversational agent retrieves and transforms natural language queries into query representations with relevant entities, query intentions, and output formats of the query. We employ Rasa, an open-source conversational AI engine, for agent development. The results show that our system yields Fl-score of 0.9747 for intent classification and 0.7163 for entity extraction. The obtained intents and entities are then used for query target information from a graph database. Finally, our system achieves end-to-end performance with accuracies ranging from 57.5%-80.0%, depending on query message complexity. The generated answers are then returned to users through a messaging channel.
2021-08-31
Adamov, Alexander, Carlsson, Anders.  2020.  Reinforcement Learning for Anti-Ransomware Testing. 2020 IEEE East-West Design Test Symposium (EWDTS). :1–5.
In this paper, we are going to verify the possibility to create a ransomware simulation that will use an arbitrary combination of known tactics and techniques to bypass an anti-malware defense. To verify this hypothesis, we conducted an experiment in which an agent was trained with the help of reinforcement learning to run the ransomware simulator in a way that can bypass anti-ransomware solution and encrypt the target files. The novelty of the proposed method lies in applying reinforcement learning to anti-ransomware testing that may help to identify weaknesses in the anti-ransomware defense and fix them before a real attack happens.
2021-08-17
Belman, Amith K., Paul, Tirthankar, Wang, Li, Iyengar, S. S., Śniatała, Paweł, Jin, Zhanpeng, Phoha, Vir V., Vainio, Seppo, Röning, Juha.  2020.  Authentication by Mapping Keystrokes to Music: The Melody of Typing. 2020 International Conference on Artificial Intelligence and Signal Processing (AISP). :1—6.
Expressing Keystroke Dynamics (KD) in form of sound opens new avenues to apply sound analysis techniques on KD. However this mapping is not straight-forward as varied feature space, differences in magnitudes of features and human interpretability of the music bring in complexities. We present a musical interface to KD by mapping keystroke features to music features. Music elements like melody, harmony, rhythm, pitch and tempo are varied with respect to the magnitude of their corresponding keystroke features. A pitch embedding technique makes the music discernible among users. Using the data from 30 users, who typed fixed strings multiple times on a desktop, shows that these auditory signals are distinguishable between users by both standard classifiers (SVM, Random Forests and Naive Bayes) and humans alike.
2021-07-27
Chaudhry, Y. S., Sharma, U., Rana, A..  2020.  Enhancing Security Measures of AI Applications. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). :713—716.
Artificial Intelligence also often referred to as machine learning is being labelled to as the future has been into light since more than a decade. Artificial Intelligence designated by the acronym AI has a vast scope of development and the developers have been working on with it constantly. AI is being associated with the existing objects in the world as well as with the ones that are about to arrive to improve them and make them more reliable. AI as it states in its name is intelligence, intelligence shown by the machines to work similar to humans and work on achieving the goals they are being provided with. Another application of AI could be to provide defenses against the present cyber threats, vehicle overrides etc. Also, AI might be intelligence but, in the end, it's still a bunch of codes, hence it is prone to be corrupted or misused by the world. To prevent the misuse of the technologies, it is necessary to deploy them with a sustainable defensive system as well. Obviously, there is going to be a default defense system but it is prone to be corrupted by the hackers or malfunctioning of the intelligence in certain scenarios which can result disastrous especially in case of Robotics. A proposal referred to as the “Guard Masking” has been offered in the following paper, to provide an alternative for securing Artificial Intelligence.