Biblio
Digital signal processing (DSP) and multimedia based reusable Intellectual property (IP) cores form key components of system-on-chips used in consumer electronic devices. They represent years of valuable investment and hence need protection against prevalent threats such as IP cloning and fraudulent claim of ownership. This paper presents a novel crypto digital signature approach which incorporates multiple security modules such as encryption, hashing and encoding for protection of digital signature processing cores. The proposed approach achieves higher robustness (and reliability), in terms of lower probability of coincidence, at lower design cost than existing watermarking approaches for IP cores. The proposed approach achieves stronger proof of authorship (on average by 39.7%) as well as requires lesser storage hardware compared to a recent similar work.
This paper proposes a prototype of a level 3 autonomous vehicle using Raspberry Pi, capable of detecting the nearby vehicles using an IR sensor. We make the first attempt to analyze autonomous vehicles from a microscopic level, focusing on each vehicle and their communications with the nearby vehicles and road-side units. Two sets of passive and active experiments on a pair of prototypes were run, demonstrating the interconnectivity of the developed prototype. Several sensors were incorporated into an emulation based on System-on-Chip to further demonstrate the feasibility of the proposed model.
SoCs implementing security modules should be both testable and secure. Oversights in a design's test structure could expose internal modules creating security vulnerabilities during test. In this paper, for the first time, we propose a novel automated security vulnerability analysis framework to identify violations of confidentiality, integrity, and availability policies caused by test structures and designer oversights during SoC integration. Results demonstrate existing information leakage vulnerabilities in implementations of various encryption algorithms and secure microprocessors. These can be exploited to obtain secret keys, control finite state machines, or gain unauthorized access to memory read/write functions.