Biblio
Use of internet increases day by day so securing network and data is a big issue. So, it is very important to maintain security to ensure safe and trusted communication of information between different organizations. Because of these IDS is a very useful component of computer and network security. IDS system is used by many organizations or industries to detect the weakness in their security, documenting previous attacks and threats and preventing all of this from violating security policies. Because of these advantages, this system is important in system security. In this paper, we find a multilevel solution for different approaches (attacks) based on intrusion detection system. In this paper, we identify different attacks and find the solutions for different type of attacks such as DDOS, SQL injection and Brute force attack. In this case, we use client-server architecture. To implement this we maintain profile of user and base on this we find normal user or attacker when system find that attack is present then it directly block the attack.
We present a testbed implementation for the development, evaluation and demonstration of security orchestration in a network function virtualization environment. As a specific scenario, we demonstrate how an intelligent response to DDoS and various other kinds of targeted attacks can be formulated such that these attacks and future variations can be mitigated. We utilise machine learning to characterise normal network traffic, attacks and responses, then utilise this information to orchestrate virtualized network functions around affected components to isolate these components and to capture, redirect and filter traffic (e.g. honeypotting) for additional analysis. This allows us to maintain a high level of network quality of service to given network functions and components despite adverse network conditions.
Denial-of-Service attacks have rapidly increased in terms of frequency and intensity, steadily becoming one of the biggest threats to Internet stability and reliability. However, a rigorous comprehensive characterization of this phenomenon, and of countermeasures to mitigate the associated risks, faces many infrastructure and analytic challenges. We make progress toward this goal, by introducing and applying a new framework to enable a macroscopic characterization of attacks, attack targets, and DDoS Protection Services (DPSs). Our analysis leverages data from four independent global Internet measurement infrastructures over the last two years: backscatter traffic to a large network telescope; logs from amplification honeypots; a DNS measurement platform covering 60% of the current namespace; and a DNS-based data set focusing on DPS adoption. Our results reveal the massive scale of the DoS problem, including an eye-opening statistic that one-third of all / 24 networks recently estimated to be active on the Internet have suffered at least one DoS attack over the last two years. We also discovered that often targets are simultaneously hit by different types of attacks. In our data, Web servers were the most prominent attack target; an average of 3% of the Web sites in .com, .net, and .org were involved with attacks, daily. Finally, we shed light on factors influencing migration to a DPS.
While the Internet of Things (IoT) becomes increasingly popular and pervasive in everyday objects, IoT devices often remain unprotected and can be exploited to launch large-scale distributed denial-of-service (DDoS) attacks. One could attempt to employ traditional DDoS defense solutions, but these solutions are hardly suitable in IoT environments since they seldom consider the resource constraints of IoT devices. This paper presents FR-WARD which defends against DDoS attacks launched from an IoT network. FR-WARD is an adaptation of the classic DDoS defense system D-WARD. While both solutions are situated near the attack sources and drop packets to throttle DDoS traffic, FR-WARD utilizes the fast retransmit mechanism in TCP congestion control to minimize resource penalties on benign IoT devices. Based on our analysis and simulation results, FR-WARD not only effectively throttles DDoS traffic but also minimizes retransmission overhead for benign IoT devices.
Communication networks can be the targets of organized and distributed attacks such as flooding-type DDOS attack in which malicious users aim to cripple a network server or a network domain. For the attack to have a major effect on the network, malicious users must act in a coordinated and time correlated manner. For instance, the members of the flooding attack increase their message transmission rates rapidly but also synchronously. Even though detection and prevention of the flooding attacks are well studied at network and transport layers, the emergence and wide deployment of new systems such as VoIP (Voice over IP) have turned flooding attacks at the session layer into a new defense challenge. In this study a structured sparsity based group anomaly detection system is proposed that not only can detect synchronized attacks, but also identify the malicious groups from normal users by jointly estimating their members, structure, starting and end points. Although we mainly focus on security on SIP (Session Initiation Protocol) servers/proxies which are widely used for signaling in VoIP systems, the proposed scheme can be easily adapted for any type of communication network system at any layer.
Software Defined Networking (SDN) has proved to be a promising approach for creating next generation software based network ecosystems. It has provided us with a centralized network provision, a holistic management plane and a well-defined level of abstraction. But, at the same time brings forth new security and management challenges. Research in the field of SDN is primarily focused on reconfiguration, forwarding and network management issues. However in recent times the interest has moved to tackling security and maintenance issues. This work is based on providing a means to mitigate security challenges in an SDN environment from a DDoS attack based point of view. This paper introduces a Multi-Agent based intrusion prevention and mitigation architecture for SDN. Thus allowing networks to govern their behavior and take appropriate measures when the network is under attack. The architecture is evaluated against filter based intrusion prevention architectures to measure efficiency and resilience against DDoS attacks and false policy based attacks.
This paper presents a wireless intrusion prevention tool for distributed denial of service attacks DDoS. This tool, called Wireless Distributed IPS WIDIP, uses a different collection of data to identify attackers from inside a private network. WIDIP blocks attackers and also propagates its information to other wireless routers that run the IPS. This communication behavior provides higher fault tolerance and stops attacks from different network endpoints. WIDIP also block network attackers at its first hop and thus reduce the malicious traffic near its source. Comparative tests of WIDIP with other two tools demonstrated that our tool reduce the delay of target response after attacks in application servers by 11%. In addition to reducing response time, WIDIP comparatively reduces the number of control messages on the network when compared to IREMAC.
The Distributed Denial of Service (DDoS) attack is a main concern in network security. Since the attackers have developed different techniques and methods, preventing DDoS attacks has become more difficult. Traditional firewall is ineffective in preventing DDoS attacks. In this paper, we propose a new type of firewall named XFirewall to defend against DDoS attacks. XFirewall is a temporary firewall and is created when an attack occurs. Also, XFirewall will be configured with dynamic rules based on real-time traffic analysis. We will discuss in detail the design and algorithm for generating an XFirewall.
In this paper, we propose a hardware-based defense system in Software-Defined Networking architecture to protect against the HTTP GET Flooding attacks, one of the most dangerous Distributed Denial of Service (DDoS) attacks in recent years. Our defense system utilizes per-URL counting mechanism and has been implemented on FPGA as an extension of a NetFPGA-based OpenFlow switch.
Distributed Denial of Service (DDoS) is a sophisticated cyber-attack due to its variety of types and techniques. The traditional mitigation method of this attack is to deploy dedicated security appliances such as firewall, load balancer, etc. However, due to the limited capacity of the hardware and the potential high volume of DDoS traffic, it may not be able to defend all the attacks. Therefore, cloud-based DDoS protection services were introduced to allow the organizations to redirect their traffic to the scrubbing centers in the cloud for filtering. This solution has some drawbacks such as privacy violation and latency. More recently, Network Functions Virtualization (NFV) and edge computing have been proposed as new networking service models. In this paper, we design a framework that leverages NFV and edge computing for DDoS mitigation through two-stage processes.
The 911 emergency service belongs to one of the 16 critical infrastructure sectors in the United States. Distributed denial of service (DDoS) attacks launched from a mobile phone botnet pose a significant threat to the availability of this vital service. In this paper we show how attackers can exploit the cellular network protocols in order to launch an anonymized DDoS attack on 911. The current FCC regulations require that all emergency calls be immediately routed regardless of the caller's identifiers (e.g., IMSI and IMEI). A rootkit placed within the baseband firmware of a mobile phone can mask and randomize all cellular identifiers, causing the device to have no genuine identification within the cellular network. Such anonymized phones can issue repeated emergency calls that cannot be blocked by the network or the emergency call centers, technically or legally. We explore the 911 infrastructure and discuss why it is susceptible to this kind of attack. We then implement different forms of the attack and test our implementation on a small cellular network. Finally, we simulate and analyze anonymous attacks on a model of current 911 infrastructure in order to measure the severity of their impact. We found that with less than 6K bots (or \$100K hardware), attackers can block emergency services in an entire state (e.g., North Carolina) for days. We believe that this paper will assist the respective organizations, lawmakers, and security professionals in understanding the scope of this issue in order to prevent possible 911-DDoS attacks in the future.
One of the recent focuses in Cloud Computing networks is Software Defined Clouds (SDC), where the Software-Defined Networking (SDN) technology is combined with the traditional Cloud network. SDC is aimed to create an effective Cloud environment by extending the virtualization concept to all resources. In that, the control plane is decoupled from the data plane in a network device and controlled by the centralized controller using the OpenFlow Protocol (OFP). As the centralized controller performs all control functions in a network, it requires strong security. Already, Cloud Computing faces many security challenges. Most vulnerable attacks in SDC is Denial-of-Service (DoS) and Distributed DoS (DDoS) attacks. To overcome the DoS attacks, we propose a distributed Firewall with Intrusion Prevention System (IPS) for SDC. The proposed distributed security mechanism is investigated for two DoS attacks, ICMP and SYN flooding attacks for different network scenarios. From the simulation results and discussion, we showed that the distributed Firewall with IPS security detects and prevents the DoS attack effectively.
In the era of Big Data, software systems can be affected by its growing complexity, both with respect to functional and non-functional requirements. As more and more people use software applications over the web, the ability to recognize if some of this traffic is malicious or legitimate is a challenge. The traffic load of security controllers, as well as the complexity of security rules to detect attacks can grow to levels where current solutions may not suffice. In this work, we propose a hierarchical distributed architecture for security control in order to partition responsibility and workload among many security controllers. In addition, our architecture proposes a more simplified way of defining security rules to allow security to be enforced on an operational level, rather than a development level.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Information security deals with a large number of subjects like spoofed message detection, audio processing, video surveillance and cyber-attack detections. However the biggest threat for the homeland security is cyber-attacks. Distributed Denial of Service attack is one among them. Interconnected systems such as database server, web server, cloud computing servers etc., are now under threads from network attackers. Denial of service is common attack in the internet which causes problem for both the user and the service providers. Distributed attack sources can be used to enlarge the attack in case of Distributed Denial of Service so that the effect of the attack will be high. Distributed Denial of Service attacks aims at exhausting the communication and computational power of the network by flooding the packets through the network and making malicious traffic in the network. In order to be an effective service the DDoS attack must be detected and mitigated quickly before the legitimate user access the attacker's target. The group of systems that is used to perform the DoS attack is known as the botnets. This paper introduces the overview of the state of art in DDoS attack detection strategies.
Distributed denial-of-service attacks are an increasing problem facing web applications, for which many defense techniques have been proposed, including several moving-target strategies. These strategies typically work by relocating targeted services over time, increasing uncertainty for the attacker, while trying not to disrupt legitimate users or incur excessive costs. Prior work has not shown, however, whether and how a rational defender would choose a moving-target method against an adaptive attacker, and under what conditions. We formulate a denial-of-service scenario as a two-player game, and solve a restricted-strategy version of the game using the methods of empirical game-theoretic analysis. Using agent-based simulation, we evaluate the performance of strategies from prior literature under a variety of attacks and environmental conditions. We find evidence for the strategic stability of various proposed strategies, such as proactive server movement, delayed attack timing, and suspected insider blocking, along with guidelines for when each is likely to be most effective.
DDoS-for-hire services, also known as booters, have commoditized DDoS attacks and enabled abusive subscribers of these services to cheaply extort, harass and intimidate businesses and people by taking them offline. However, due to the underground nature of these booters, little is known about their underlying technical and business structure. In this paper, we empirically measure many facets of their technical and payment infrastructure. We also perform an analysis of leaked and scraped data from three major booters–-Asylum Stresser, Lizard Stresser and VDO–-which provides us with an in-depth view of their customers and victims. Finally, we conduct a large-scale payment intervention in collaboration with PayPal and evaluate its effectiveness as a deterrent to their operations. Based on our analysis, we show that these booters are responsible for hundreds of thousands of DDoS attacks and identify potentially promising methods to undermine these services by increasing their costs of operation.
Botnets are emerging as the most serious cyber threat among different forms of malware. Today botnets have been facilitating to launch many cybercriminal activities like DDoS, click fraud, phishing attacks etc. The main purpose of botnet is to perform massive financial threat. Many large organizations, banks and social networks became the target of bot masters. Botnets can also be leased to motivate the cybercriminal activities. Recently several researches and many efforts have been carried out to detect bot, C&C channels and bot masters. Ultimately bot maters also strengthen their activities through sophisticated techniques. Many botnet detection techniques are based on payload analysis. Most of these techniques are inefficient for encrypted C&C channels. In this paper we explore different categories of botnet and propose a detection methodology to classify bot host from the normal host by analyzing traffic flow characteristics based on time intervals instead of payload inspection. Due to that it is possible to detect botnet activity even encrypted C&C channels are used.
Attacks on airport information network services in the form of Denial of Service (DoS), Distributed DoS (DDoS), and hijacking are the most effective schemes mostly explored by cyber terrorists in the aviation industry running Mission Critical Services (MCSs). This work presents a case for Airport Information Resource Management Systems (AIRMS) which is a cloud based platform proposed for the Nigerian aviation industry. Granting that AIRMS is susceptible to DoS attacks, there is need to develop a robust counter security network model aimed at pre-empting such attacks and subsequently mitigating the vulnerability in such networks. Existing works in literature regarding cyber security DoS and other schemes have not explored embedded Stateful Packet Inspection (SPI) based on OpenFlow Application Centric Infrastructure (OACI) for securing critical network assets. As such, SPI-OACI was proposed to address the challenge of Vulnerability Bandwidth Depletion DDoS Attacks (VBDDA). A characterization of the Cisco 9000 router firewall as an embedded network device with support for Virtual DDoS protection was carried out in the AIRMS threat mitigation design. Afterwards, the mitigation procedure and the initial phase of the design with Riverbed modeler software were realized. For the security Quality of Service (QoS) profiling, the system response metrics (i.e. SPI-OACI delay, throughput and utilization) in cloud based network were analyzed only for normal traffic flows. The work concludes by offering practical suggestion for securing similar enterprise management systems running on cloud infrastructure against cyber terrorists.
Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.
We introduce a cloud-enabled defense mechanism for Internet services against network and computational Distributed Denial-of-Service (DDoS) attacks. Our approach performs selective server replication and intelligent client re-assignment, turning victim servers into moving targets for attack isolation. We introduce a novel system architecture that leverages a "shuffling" mechanism to compute the optimal re-assignment strategy for clients on attacked servers, effectively separating benign clients from even sophisticated adversaries that persistently follow the moving targets. We introduce a family of algorithms to optimize the runtime client-to-server re-assignment plans and minimize the number of shuffles to achieve attack mitigation. The proposed shuffling-based moving target mechanism enables effective attack containment using fewer resources than attack dilution strategies using pure server expansion. Our simulations and proof-of-concept prototype using Amazon EC2 [1] demonstrate that we can successfully mitigate large-scale DDoS attacks in a small number of shuffles, each of which incurs a few seconds of user-perceived latency.
Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.
IP spoofing based DDoS attack that relies on multiple compromised hosts in the network to attack the victim. In IP spoofing, IP addresses can be forged easily, thus, makes it difficult to filter illegitimate packets from legitimate one out of aggregated traffic. A number of mitigation techniques have been proposed in the literature by various researchers. The conventional Hop Count Filtering or probabilistic Hop Count Filtering based research work indicates the problems related to higher computational time and low detection rate of illegitimate packets. In this paper, DPHCF-RTT technique has been implemented and analysed for variable number of hops. Goal is to improve the limitations of Conventional HCF or Probabilistic HCF techniques by maximizing the detection rate of illegitimate packets and reducing the computation time. It is based on distributed probabilistic HCF using RTT. It has been used in an intermediate system. It has the advantage for resolving the problems of network bandwidth jam and host resources exhaustion. MATLAB 7 has been used for simulations. Mitigation of DDoS attacks have been done through DPHCF-RTT technique. It has been shown a maximum detection rate up to 99% of malicious packets.
The Internet is vulnerable to bandwidth distributed denial-of-service (BW-DDoS) attacks, wherein many hosts send a huge number of packets to cause congestion and disrupt legitimate traffic. So far, BW-DDoS attacks have employed relatively crude, inefficient, brute force mechanisms; future attacks might be significantly more effective and harmful. To meet the increasing threats, we must deploy more advanced defenses.