Visible to the public Biblio

Filters: Keyword is Filtering  [Clear All Filters]
2015-05-01
Shuai Yi, Xiaogang Wang.  2014.  Profiling stationary crowd groups. Multimedia and Expo (ICME), 2014 IEEE International Conference on. :1-6.

Detecting stationary crowd groups and analyzing their behaviors have important applications in crowd video surveillance, but have rarely been studied. The contributions of this paper are in two aspects. First, a stationary crowd detection algorithm is proposed to estimate the stationary time of foreground pixels. It employs spatial-temporal filtering and motion filtering in order to be robust to noise caused by occlusions and crowd clutters. Second, in order to characterize the emergence and dispersal processes of stationary crowds and their behaviors during the stationary periods, three attributes are proposed for quantitative analysis. These attributes are recognized with a set of proposed crowd descriptors which extract visual features from the results of stationary crowd detection. The effectiveness of the proposed algorithms is shown through experiments on a benchmark dataset.

Yoohwan Kim, Juyeon Jo, Shrestha, S..  2014.  A server-based real-time privacy protection scheme against video surveillance by Unmanned Aerial Systems. Unmanned Aircraft Systems (ICUAS), 2014 International Conference on. :684-691.

Unmanned Aerial Systems (UAS) have raised a great concern on privacy recently. A practical method to protect privacy is needed for adopting UAS in civilian airspace. This paper examines the privacy policies, filtering strategies, existing techniques, then proposes a novel method based on the encrypted video stream and the cloud-based privacy servers. In this scheme, all video surveillance images are initially encrypted, then delivered to a privacy server. The privacy server decrypts the video using the shared key with the camera, and filters the image according to the privacy policy specified for the surveyed region. The sanitized video is delivered to the surveillance operator or anyone on the Internet who is authorized. In a larger system composed of multiple cameras and multiple privacy servers, the keys can be distributed using Kerberos protocol. With this method the privacy policy can be changed on demand in real-time and there is no need for a costly on-board processing unit. By utilizing the cloud-based servers, advanced image processing algorithms and new filtering algorithms can be applied immediately without upgrading the camera software. This method is cost-efficient and promotes video sharing among multiple subscribers, thus it can spur wide adoption.

2015-04-30
Foroushani, V.A., Zincir-Heywood, A.N..  2014.  TDFA: Traceback-Based Defense against DDoS Flooding Attacks. Advanced Information Networking and Applications (AINA), 2014 IEEE 28th International Conference on. :597-604.

Distributed Denial of Service (DDoS) attacks are one of the challenging network security problems to address. The existing defense mechanisms against DDoS attacks usually filter the attack traffic at the victim side. The problem is exacerbated when there are spoofed IP addresses in the attack packets. In this case, even if the attacking traffic can be filtered by the victim, the attacker may reach the goal of blocking the access to the victim by consuming the computing resources or by consuming a big portion of the bandwidth to the victim. This paper proposes a Trace back-based Defense against DDoS Flooding Attacks (TDFA) approach to counter this problem. TDFA consists of three main components: Detection, Trace back, and Traffic Control. In this approach, the goal is to place the packet filtering as close to the attack source as possible. In doing so, the traffic control component at the victim side aims to set up a limit on the packet forwarding rate to the victim. This mechanism effectively reduces the rate of forwarding the attack packets and therefore improves the throughput of the legitimate traffic. Our results based on real world data sets show that TDFA is effective to reduce the attack traffic and to defend the quality of service for the legitimate traffic.