Visible to the public Biblio

Filters: Keyword is Filtering  [Clear All Filters]
2023-07-21
Neuimin, Oleksandr S., Zhuk, Serhii Ya., Tovkach, Igor O., Malenchyk, Taras V..  2022.  Analysis Of The Small UAV Trajectory Detection Algorithm Based On The “l/n-d” Criterion Using Kalman Filtering Due To FMCW Radar Data. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :741—745.
Promising means of detecting small UAVs are FMCW radar systems. Small UAVs with an RCS value of the order of 10−3••• 10−1m2 are characterized by a low SNR (less than 10 dB). To ensure an acceptable probability of detection in the resolution element (more than 0.9), it becomes necessary to reduce the detection threshold. However, this leads to a significant increase in the probability of false alarms (more than 10−3) and is accompanied by the appearance of a large number of false plots. The work describes an algorithm for trajectory detecting of a small UAV based on a “l/n-d” criterion using Kalman filtering in a spherical coordinate system due to FMCW radar data. Statistical analysis of algorithms based on two types of criteria “3/5-2” and “5/9-2” is performed. It is shown that the algorithms allow to achieve the probability of target trajectory detection greater than 0.9 and low probability of false detection of the target trajectory less than 10−4 with the false alarm probability in the resolution element 10−3••• 10−2•
Huang, Fanwei, Li, Qiuping, Zhao, Junhui.  2022.  Trust Management Model of VANETs Based on Machine Learning and Active Detection Technology. 2022 IEEE/CIC International Conference on Communications in China (ICCC Workshops). :412—416.
With the continuous development of vehicular ad hoc networks (VANETs), it brings great traffic convenience. How-ever, it is still a difficult problem for malicious vehicles to spread false news. In order to ensure the reliability of the message, an effective trust management model must be established, so that malicious vehicles can be detected and false information can be identified in the vehicle ad hoc network in time. This paper presents a trust management model based on machine learning and active detection technology, which evaluates the trust of vehicles and events to ensure the credibility of communication. Through the active detection mechanism, vehicles can detect the indirect trust of their neighbors, which improves the filtering speed of malicious nodes. Bayesian classifier can judge whether a vehicle is a malicious node by the state information of the vehicle, and can limit the behavior of the malicious vehicle at the first time. The simulation results show that our scheme can obviously restrict malicious vehicles.
2023-06-22
Seetharaman, Sanjay, Malaviya, Shubham, Vasu, Rosni, Shukla, Manish, Lodha, Sachin.  2022.  Influence Based Defense Against Data Poisoning Attacks in Online Learning. 2022 14th International Conference on COMmunication Systems & NETworkS (COMSNETS). :1–6.
Data poisoning is a type of adversarial attack on training data where an attacker manipulates a fraction of data to degrade the performance of machine learning model. There are several known defensive mechanisms for handling offline attacks, however defensive measures for online learning, where data points arrive sequentially, have not garnered similar interest. In this work, we propose a defense mechanism to minimize the degradation caused by the poisoned training data on a learner's model in an online setup. Our proposed method utilizes an influence function which is a classic technique in robust statistics. Further, we supplement it with the existing data sanitization methods for filtering out some of the poisoned data points. We study the effectiveness of our defense mechanism on multiple datasets and across multiple attack strategies against an online learner.
ISSN: 2155-2509
Žádník, Martin.  2022.  Towards Inference of DDoS Mitigation Rules. NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium. :1–5.
DDoS attacks still represent a severe threat to network services. While there are more or less workable solutions to defend against these attacks, there is a significant space for further research regarding automation of reactions and subsequent management. In this paper, we focus on one piece of the whole puzzle. We strive to automatically infer filtering rules which are specific to the current DoS attack to decrease the time to mitigation. We employ a machine learning technique to create a model of the traffic mix based on observing network traffic during the attack and normal period. The model is converted into the filtering rules. We evaluate our approach with various setups of hyperparameters. The results of our experiments show that the proposed approach is feasible in terms of the capability of inferring successful filtering rules.
ISSN: 2374-9709
Muragaa, Wisam H. A.  2022.  The single packet Low-rate DDoS attack detection and prevention in SDN. 2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA). :323–328.
The new paradigm software-defined networking (SDN) supports network innovation and makes the control of network operations more agile. The flow table is the main component of SDN switch which contains a set of flow entries that define how new flows are processed. Low-rate distributed denial-of-service (LR-DDoS) attacks are difficult to detect and mitigate because they behave like legitimate users. There are many detection methods for LR DDoS attacks in the literature, but none of these methods detect single-packet LR DDoS attacks. In fact, LR DDoS attackers exploit vulnerabilities in the mechanism of congestion control in TCP to either periodically retransmit burst attack packets for a short time period or to continuously launch a single attack packet at a constant low rate. In this paper, the proposed scheme detects LR-DDoS by examining all incoming packets and filtering the single packets sent from different source IP addresses to the same destination at a constant low rate. Sending single packets at a constant low rate will increase the number of flows at the switch which can make it easily overflowed. After detecting the single attack packets, the proposed scheme prevents LR-DDoS at its early stage by deleting the flows created by these packets once they reach the threshold. According to the results of the experiment, the scheme achieves 99.47% accuracy in this scenario. In addition, the scheme has simple logic and simple calculation, which reduces the overhead of the SDN controller.
2023-03-03
Ma, Limei, Zhao, Dongmei.  2022.  Research on Setting of Two Firewall Rules Based on Ubuntu Linux System. 2022 International Conference on Computer Network, Electronic and Automation (ICCNEA). :178–182.
"Security first" is the most concerned issue of Linux administrators. Security refers to the integrity of data. The authentication security and integrity of data are higher than the privacy security of data. Firewall is used to realize the function of access control under Linux. It is divided into hardware or software firewall. No matter in which network, the firewall must work at the edge of the network. Our task is to define how the firewall works. This is the firewall's policies and rules, so that it can detect the IP and data in and out of the network. At present, there are three or four layers of firewalls on the market, which are called network layer firewalls, and seven layers of firewalls, which are actually the gateway of the agent layer. But for the seven layer firewall, no matter what your source port or target port, source address or target address is, it will check all your things. Therefore, the seven layer firewall is more secure, but it brings lower efficiency. Therefore, the usual firewall schemes on the market are a combination of the two. And because we all need to access from the port controlled by the firewall, the work efficiency of the firewall has become the most important control of how much data users can access. This paper introduces two types of firewalls iptables and TCP\_Wrappers. What are the differences between the use policies, rules and structures of the two firewalls? This is the problem to be discussed in this paper.
ISSN: 2770-7695
2023-02-17
Das, Lipsa, Ahuja, Laxmi, Pandey, Adesh.  2022.  Analysis of Twitter Spam Detection Using Machine Learning Approach. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :764–769.
Now a days there are many online social networks (OSN) which are very popular among Internet users and use this platform for finding new connections, sharing their activities and thoughts. Twitter is such social media platforms which is very popular among this users. Survey says, it has more than 310 million monthly users who are very active and post around 500+ million tweets in a day and this attracts, the spammer or cyber-criminal to misuse this platform for their malicious benefits. Product advertisement, phishing true users, pornography propagation, stealing the trending news, sharing malicious link to get the victims for making money are the common example of the activities of spammers. In Aug-2014, Twitter made public that 8.5% of its active Twitter users (monthly) that is approx. 23+ million users, who have automatically contacted their servers for regular updates. Thus for a spam free environment in twitter, it is greatly required to detect and filter these spammer from the legitimate users. Here in our research paper, effectiveness & features of twitter spam detection, various methods are summarized with their benefits and limitations are presented. [1]
Georgieva-Trifonova, Tsvetanka.  2022.  Research on Filtering Feature Selection Methods for E-Mail Spam Detection by Applying K-NN Classifier. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–4.
In the present paper, the application of filtering methods to select features when detecting email spam using the K-NN classifier is examined. The experiments include computation of the accuracy and F-measure of the e-mail texts classification with different methods for feature selection, different number of selected features and two ways to find the distance between dataset examples when executing K-NN classifier - Euclidean distance and cosine similarity. The obtained results are summarized and analyzed.
Belkhouche, Yassine.  2022.  A language processing-free unified spam detection framework using byte histograms and deep learning. 2022 Fourth International Conference on Transdisciplinary AI (TransAI). :83–86.
In this paper, we established a unified deep learning-based spam filtering method. The proposed method uses the message byte-histograms as a unified representation for all message types (text, images, or any other format). A deep convolutional neural network (CNN) is used to extract high-level features from this representation. A fully connected neural network is used to perform the classification using the extracted CNN features. We validate our method using several open-source text-based and image-based spam datasets.We obtained an accuracy higher than 94% on all datasets.
Yerima, Suleiman Y., Bashar, Abul.  2022.  Semi-supervised novelty detection with one class SVM for SMS spam detection. 2022 29th International Conference on Systems, Signals and Image Processing (IWSSIP). CFP2255E-ART:1–4.
The volume of SMS messages sent on a daily basis globally has continued to grow significantly over the past years. Hence, mobile phones are becoming increasingly vulnerable to SMS spam messages, thereby exposing users to the risk of fraud and theft of personal data. Filtering of messages to detect and eliminate SMS spam is now a critical functionality for which different types of machine learning approaches are still being explored. In this paper, we propose a system for detecting SMS spam using a semi-supervised novelty detection approach based on one class SVM classifier. The system is built as an anomaly detector that learns only from normal SMS messages thus enabling detection models to be implemented in the absence of labelled SMS spam training examples. We evaluated our proposed system using a benchmark dataset consisting of 747 SMS spam and 4827 non-spam messages. The results show that our proposed method out-performed the traditional supervised machine learning approaches based on binary, frequency or TF-IDF bag-of-words. The overall accuracy was 98% with 100% SMS spam detection rate and only around 3% false positive rate.
ISSN: 2157-8702
Wu, Hua, Zhang, Xuange, Chen, Tingzheng, Cheng, Guang, Hu, Xiaoyan.  2022.  IM-Shield: A Novel Defense System against DDoS Attacks under IP Spoofing in High-speed Networks. ICC 2022 - IEEE International Conference on Communications. :4168–4173.
DDoS attacks are usually accompanied by IP spoofing, but the availability of existing DDoS defense systems for high-speed networks decreases when facing DDoS attacks with IP spoofing. Although IP traceback technologies are proposed to focus on IP spoofing in DDoS attacks, there are problems in practical application such as the need to change existing protocols and extensive infrastructure support. To defend against DDoS attacks under IP spoofing in high-speed networks, we propose a novel DDoS defense system, IM-Shield. IM-Shield uses the address pair consisting of the upper router interface MAC address and the destination IP address for DDoS attack detection. IM-Shield implements fine-grained defense against DDoS attacks under IP spoofing by filtering the address pairs of attack traffic without requiring protocol and infrastructure extensions to be applied on the Internet. Detection experiments using the public dataset show that in a 10Gbps high-speed network, the detection precision of IM-Shield for DDoS attacks under IP spoofing is higher than 99.9%; and defense experiments simulating real-time processing in a 10Gbps high-speed network show that IM-Shield can effectively defend against DDoS attacks under IP spoofing.
Heseding, Hauke, Zitterbart, Martina.  2022.  ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :106–113.
Volumetric Distributed Denial of Service attacks forcefully disrupt the availability of online services by congesting network links with arbitrary high-volume traffic. This brute force approach has collateral impact on the upstream network infrastructure, making early attack traffic removal a key objective. To reduce infrastructure load and maintain service availability, we introduce ReCEIF, a topology-independent mitigation strategy for early, rule-based ingress filtering leveraging deep reinforcement learning. ReCEIF utilizes hierarchical heavy hitters to monitor traffic distribution and detect subnets that are sending high-volume traffic. Deep reinforcement learning subsequently serves to refine hierarchical heavy hitters into effective filter rules that can be propagated upstream to discard traffic originating from attacking systems. Evaluating all filter rules requires only a single clock cycle when utilizing fast ternary content-addressable memory, which is commonly available in software defined networks. To outline the effectiveness of our approach, we conduct a comparative evaluation to reinforcement learning-based router throttling.
2023-02-03
Fu, Shichong, Li, Xiaoling, Zhao, Yao.  2022.  Improved Steganography Based on Referential Cover and Non-symmetric Embedding. 2022 IEEE 5th International Conference on Electronics Technology (ICET). :1202–1206.
Minimizing embedding impact model of steganography has good performance for steganalysis detection. By using effective distortion cost function and coding method, steganography under this model becomes the mainstream embedding framework recently. In this paper, to improve the anti-detection performance, a new steganography optimization model by constructing a reference cover is proposed. First, a reference cover is construed by performing a filtering operation on the cover image. Then, by minimizing the residual between the reference cover and the original cover, the optimization function is formulated considering the effect of different modification directions. With correcting the distortion cost of +1 and \_1 modification operations, the stego image obtained by the proposed method is more consistent with the natural image. Finally, by applying the proposed framework to the cost function of the well-known HILL embedding, experimental results show that the anti-detection performance of the proposed method is better than the traditional method.
ISSN: 2768-6515
2023-01-13
Zhao, Lutan, Li, Peinan, HOU, RUI, Huang, Michael C., Qian, Xuehai, Zhang, Lixin, Meng, Dan.  2022.  HyBP: Hybrid Isolation-Randomization Secure Branch Predictor. 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA). :346—359.
Recently exposed vulnerabilities reveal the necessity to improve the security of branch predictors. Branch predictors record history about the execution of different processes, and such information from different processes are stored in the same structure and thus accessible to each other. This leaves the attackers with the opportunities for malicious training and malicious perception. Physical or logical isolation mechanisms such as using dedicated tables and flushing during context-switch can provide security but incur non-trivial costs in space and/or execution time. Randomization mechanisms incurs the performance cost in a different way: those with higher securities add latency to the critical path of the pipeline, while the simpler alternatives leave vulnerabilities to more sophisticated attacks.This paper proposes HyBP, a practical hybrid protection and effective mechanism for building secure branch predictors. The design applies the physical isolation and randomization in the right component to achieve the best of both worlds. We propose to protect the smaller tables with physically isolation based on (thread, privilege) combination; and protect the large tables with randomization. Surprisingly, the physical isolation also significantly enhances the security of the last-level tables by naturally filtering out accesses, reducing the information flow to these bigger tables. As a result, key changes can happen less frequently and be performed conveniently at context switches. Moreover, we propose a latency hiding design for a strong cipher by precomputing the "code book" with a validated, cryptographically strong cipher. Overall, our design incurs a performance penalty of 0.5% compared to 5.1% of physical isolation under the default context switching interval in Linux.
2022-12-07
Acosta, L., Guerrero, E., Caballero, C., Verdú, J., de Paco, P..  2022.  Synthesis of Acoustic Wave Multiport Functions by using Coupling Matrix Methodologies. 2022 IEEE MTT-S International Conference on Microwave Acoustics and Mechanics (IC-MAM). :56—59.
Acoustic wave (AW) synthesis methodologies have become popular among AW filter designers because they provide a fast and precise seed to start with the design of AW devices. Nowadays, with the increasing complexity of carrier aggregation, there is a strong necessity to develop synthesis methods more focused on multiport filtering schemes. However, when dealing with multiport filtering functions, numerical accuracy plays an important role to succeed with the synthesis process since polynomial degrees are much higher as compared to the standalone filter case. In addition to polynomial degree, the number set of polynomial coefficients is also an important source of error during the extraction of the circuital elements of the filter. Nonetheless, in this paper is demonstrated that coupling matrix approaches are the best choice when the objective is to synthesize filtering functions with complex roots in their characteristic polynomials, which is the case of the channel polynomials of the multiport device.
2022-11-18
Yüksel, Ulaş, Sözer, Hasan.  2021.  Dynamic Filtering and Prioritization of Static Code Analysis Alerts. 2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW). :294–295.
We propose an approach for filtering and prioritizing static code analysis alerts while these alerts are being reviewed by the developer. We construct a Prolog knowledge base that captures the data flow information in the source code as well as the reported alerts, their properties and associations with the data flow. The knowledge base is updated as the developer reviews the listed alerts and decides whether they point at an actual fault or not. These updates provide useful information since some of the alerts of the same type can be related in terms of their root cause. Hence, dynamically updated knowledge base can be queried to eliminate or prioritize the remaining alerts in the review list. We present a motivating example to illustrate the approach and its automation by integrating a set of tools.
2022-10-20
Castanhel, Gabriel R., Heinrich, Tiago, Ceschin, Fabrício, Maziero, Carlos.  2021.  Taking a Peek: An Evaluation of Anomaly Detection Using System calls for Containers. 2021 IEEE Symposium on Computers and Communications (ISCC). :1—6.
The growth in the use of virtualization in the last ten years has contributed to the improvement of this technology. The practice of implementing and managing this type of isolated environment raises doubts about the security of such systems. Considering the host's proximity to a container, approaches that use anomaly detection systems attempt to monitor and detect unexpected behavior. Our work aims to use system calls to identify threats within a container environment, using machine learning based strategies to distinguish between expected and unexpected behaviors (possible threats).
2022-09-20
Afzal-Houshmand, Sam, Homayoun, Sajad, Giannetsos, Thanassis.  2021.  A Perfect Match: Deep Learning Towards Enhanced Data Trustworthiness in Crowd-Sensing Systems. 2021 IEEE International Mediterranean Conference on Communications and Networking (MeditCom). :258—264.
The advent of IoT edge devices has enabled the collection of rich datasets, as part of Mobile Crowd Sensing (MCS), which has emerged as a key enabler for a wide gamut of safety-critical applications ranging from traffic control, environmental monitoring to assistive healthcare. Despite the clear advantages that such unprecedented quantity of data brings forth, it is also subject to inherent data trustworthiness challenges due to factors such as malevolent input and faulty sensors. Compounding this issue, there has been a plethora of proposed solutions, based on the use of traditional machine learning algorithms, towards assessing and sifting faulty data without any assumption on the trustworthiness of their source. However, there are still a number of open issues: how to cope with the presence of strong, colluding adversaries while at the same time efficiently managing this high influx of incoming user data. In this work, we meet these challenges by proposing the hybrid use of Deep Learning schemes (i.e., LSTMs) and conventional Machine Learning classifiers (i.e. One-Class Classifiers) for detecting and filtering out false data points. We provide a prototype implementation coupled with a detailed performance evaluation under various (attack) scenarios, employing both real and synthetic datasets. Our results showcase how the proposed solution outperforms various existing resilient aggregation and outlier detection schemes.
2022-07-15
Zarzour, Hafed, Maazouzi, Faiz, Al–Zinati, Mohammad, Jararweh, Yaser, Baker, Thar.  2021.  An Efficient Recommender System Based on Collaborative Filtering Recommendation and Cluster Ensemble. 2021 Eighth International Conference on Social Network Analysis, Management and Security (SNAMS). :01—06.
In the last few years, cluster ensembles have emerged as powerful techniques that integrate multiple clustering methods into recommender systems. Such integration leads to improving the performance, quality and the accuracy of the generated recommendations. This paper proposes a novel recommender system based on a cluster ensemble technique for big data. The proposed system incorporates the collaborative filtering recommendation technique and the cluster ensemble to improve the system performance. Besides, it integrates the Expectation-Maximization method and the HyperGraph Partitioning Algorithm to generate new recommendations and enhance the overall accuracy. We use two real-world datasets to evaluate our system: TED Talks and MovieLens. The experimental results show that the proposed system outperforms the traditional methods that utilize single clustering techniques in terms of recommendation quality and predictive accuracy. Most importantly, the results indicate that the proposed system provides the highest precision, recall, accuracy, F1, and the lowest Root Mean Square Error regardless of the used similarity strategy.
2022-07-12
Bajard, Jean-Claude, Fukushima, Kazuhide, Kiyomoto, Shinsaku, Plantard, Thomas, Sipasseuth, Arnaud, Susilo, Willy.  2021.  Generating Residue Number System Bases. 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH). :86—93.
Residue number systems provide efficient techniques for speeding up calculations and/or protecting against side channel attacks when used in the context of cryptographic engineering. One of the interests of such systems is their scalability, as the existence of large bases for some specialized systems is often an open question. In this paper, we present highly optimized methods for generating large bases for residue number systems and, in some cases, the largest possible bases. We show their efficiency by demonstrating their improvement over the state-of-the-art bases reported in the literature. This work make it possible to address the problem of the scalability issue of finding new bases for a specific system that arises whenever a parameter changes, and possibly open new application avenues.
2022-07-05
Wang, Zhiwen, Zhang, Qi, Sun, Hongtao, Hu, Jiqiang.  2021.  Detection of False Data Injection Attacks in smart grids based on cubature Kalman Filtering. 2021 33rd Chinese Control and Decision Conference (CCDC). :2526—2532.
The false data injection attacks (FDIAs) in smart grids can offset the power measurement data and it can bypass the traditional bad data detection mechanism. To solve this problem, a new detection mechanism called cosine similarity ratio which is based on the dynamic estimation algorithm of square root cubature Kalman filter (SRCKF) is proposed in this paper. That is, the detection basis is the change of the cosine similarity between the actual measurement and the predictive measurement before and after the attack. When the system is suddenly attacked, the actual measurement will have an abrupt change. However, the predictive measurement will not vary promptly with it owing to the delay of Kalman filter estimation. Consequently, the cosine similarity between the two at this moment has undergone a change. This causes the ratio of the cosine similarity at this moment and that at the initial moment to fluctuate considerably compared to safe operation. If the detection threshold is triggered, the system will be judged to be under attack. Finally, the standard IEEE-14bus test system is used for simulation experiments to verify the effectiveness of the proposed detection method.
2022-07-01
Wu, Zhijun, Cui, Weihang, Gao, Pan.  2021.  Filtration method of DDoS attacks based on time-frequency analysis. 2021 7th IEEE Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :75–80.
Traditional DDoS attacks mainly send massive data packets through the attacking machine, consuming the network resources or server resources of the target server, making users unable to use server resources to achieve the purpose of denial of service. This type of attack is called a Flooding-based DDoS (FDDoS) attack. It has the characteristics of large traffic and suddenness. However, Low-rate DDoS (LDDoS) attack is a new type of DDoS attack. LDDoS utilize the TCP congestion control mechanism and sends periodic pulses to attack, which can seriously reduce the TCP flow throughput of the attacked link. It has the characteristics of small traffic and strong concealment. Each of these two DDoS attack methods has its own hard-to-handle characteristics, so that there is currently no particularly effective method to prevent such attacks. This paper uses time-frequency analysis to classify and filter DDoS traffic. The proposed filtering method is designed as a system in the actual environment. Experimental results show that the designed filtering algorithm can resist not only FDDoS attacks, but also LDDoS attacks.
2022-06-07
Meng, Fanzhi, Lu, Peng, Li, Junhao, Hu, Teng, Yin, Mingyong, Lou, Fang.  2021.  GRU and Multi-autoencoder based Insider Threat Detection for Cyber Security. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :203–210.
The concealment and confusion nature of insider threat makes it a challenging task for security analysts to identify insider threat from log data. To detect insider threat, we propose a novel gated recurrent unit (GRU) and multi-autoencoder based insider threat detection method, which is an unsupervised anomaly detection method. It takes advantage of the extremely unbalanced characteristic of insider threat data and constructs a normal behavior autoencoder with low reconfiguration error through multi-level filter behavior learning, and identifies the behavior data with high reconfiguration error as abnormal behavior. In order to achieve the high efficiency of calculation and detection, GRU and multi-head attention are introduced into the autoencoder. Use dataset v6.2 of the CERT insider threat as validation data and threat detection recall as evaluation metric. The experimental results show that the effect of the proposed method is obviously better than that of Isolation Forest, LSTM autoencoder and multi-channel autoencoders based insider threat detection methods, and it's an effective insider threat detection technology.
2022-05-19
Wu, Juan.  2021.  Long Text Filtering in English Translation based on LSTM Semantic Association. 2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :740–743.
Translation studies is one of the fastest growing interdisciplinary research fields in the world today. Business English is an urgent research direction in the field of translation studies. To some extent, the quality of business English translation directly determines the success or failure of international trade and the economic benefits. On the basis of sequence information encoding and decoding model of LSTM, this paper proposes a strategy combining attention mechanism with bidirectional LSTM model to handle the question of feature extraction of text information. The proposed method reduces the semantic complexity and improves the overall correlation accuracy. The experimental results show its advantages.
2022-05-10
Shin, Ho-Chul, Na, Kiin.  2021.  Abnormal Situation Detection using Global Surveillance Map. 2021 International Conference on Information and Communication Technology Convergence (ICTC). :769–772.
in this paper, we describe a method for detecting abnormal pedestrians or cars by expressing the behavioral characteristics of pedestrians on a global surveillance map in a video security system using CCTV and patrol robots. This method converts a large amount of video surveillance data into a compressed map shape format to efficiently transmit and process data. By using deep learning auto-encoder and CNN algorithm, pedestrians belonging to the abnormal category can be detected in two steps. In the case of the first-stage abnormal candidate extraction, the normal detection rate was 87.7%, the abnormal detection rate was 88.3%, and in the second stage abnormal candidate filtering, the normal detection rate was 99.8% and the abnormal detection rate was 96.5%.