Biblio
The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.
ISSN: 2474-9699
In healthcare 4.0 ecosystems, authentication of healthcare information allows health stakeholders to be assured that data is originated from correct source. Recently, biometric based authentication is a preferred choice, but as the templates are stored on central servers, there are high chances of copying and generating fake biometrics. An adversary can forge the biometric pattern, and gain access to critical health systems. Thus, to address the limitation, the paper proposes a scheme, PHBio, where an encryption-based biometric system is designed prior before storing the template to the server. Once a user provides his biometrics, the authentication process does not decrypt the data, rather uses a homomorphic-enabled Paillier cryptosystem. The scheme presents the encryption and the comparison part which is based on euclidean distance (EUD) strategy between the user input and the stored template on the server. We consider the minimum distance, and compare the same with a predefined threshold distance value to confirm a biometric match, and authenticate the user. The scheme is compared against parameters like accuracy, false rejection rates (FARs), and execution time. The proposed results indicate the validity of the scheme in real-time health setups.
Video retrieval technology faces a series of challenges with the tremendous growth in the number of videos. In order to improve the retrieval performance in efficiency and accuracy, a novel deep hash method for video data hierarchical retrieval is proposed in this paper. The approach first uses cluster-based method to extract key frames, which reduces the workload of subsequent work. On the basis of this, high-level semantical features are extracted from VGG16, a widely used deep convolutional neural network (deep CNN) model. Then we utilize a hierarchical retrieval strategy to improve the retrieval performance, roughly can be categorized as coarse search and fine search. In coarse search, we modify simHash to learn hash codes for faster speed, and in fine search, we use the Euclidean distance to achieve higher accuracy. Finally, we compare our approach with other two methods through practical experiments on two videos, and the results demonstrate that our approach has better retrieval effect.
A major challenge for utilities is energy theft, wherein malicious actors steal energy for financial gain. One such form of theft in the smart grid is the fraudulent amplification of energy generation measurements from DERs, such as photo-voltaics. It is important to detect this form of malicious activity, but in a way that ensures the privacy of customers. Not considering privacy aspects could result in a backlash from customers and a heavily curtailed deployment of services, for example. In this short paper, we present a novel privacy-preserving approach to the detection of manipulated DER generation measurements.
Searchable Encryption (SE) schemes provide security and privacy to the cloud data. The existing SE approaches enable multiple users to perform search operation by using various schemes like Broadcast Encryption (BE), Attribute-Based Encryption (ABE), etc. However, these schemes do not allow multiple users to perform the search operation over the encrypted data of multiple owners. Some SE schemes involve a Proxy Server (PS) that allow multiple users to perform the search operation. However, these approaches incur huge computational burden on PS due to the repeated encryption of the user queries for transformation purpose so as to ensure that users' query is searchable over the encrypted data of multiple owners. Hence, to eliminate this computational burden on PS, this paper proposes a secure proxy server approach that performs the search operation without transforming the user queries. This approach also returns the top-k relevant documents to the user queries by using Euclidean distance similarity approach. Based on the experimental study, this approach is efficient with respect to search time and accuracy.
We, humans, have the ability to easily imagine scenes that depict sentences such as ``Today is a beautiful sunny day'' or ``There is a Christmas feel, in the air''. While it is hard to precisely describe what one person may imagine, the essential high-level themes associated with such sentences largely remains the same. The ability to synthesize novel images that depict the feel of a sentence is very useful in a variety of applications such as education, advertisement, and entertainment. While existing papers tackle this problem given a style image, we aim to provide a far more intuitive and easy to use solution that synthesizes novel renditions of an existing image, conditioned on a given sentence. We present a method for cross-modal style transfer between an English sentence and an image, to produce a new image that imbibes the essential theme of the sentence. We do this by modifying the style transfer mechanism used in image style transfer to incorporate a style component derived from the given sentence. We demonstrate promising results using the YFCC100m dataset.
Side-channel collision attacks have been one of the most powerful attack techniques, combining advantages of traditional side-channel attack and mathematical cryptanalysis. In this paper, we propose a novel multiple-bits side-channel collision attack based on double distance voting detection, which can find all 120 relations among 16 key bytes with only 32 averaged power traces when applied to AES (Advanced Encryption Standard) algorithm. Practical attack experiments are performed successfully on a hardware implementation of AES on FPGA board. Results show that the necessary number of traces for our method is about 50% less than correlation-enhanced collision attack and 76% less than binary voting test with 90% success rate.
A wireless sensor network (WSN) is composed of sensor nodes and a base station. In WSNs, constructing an efficient key-sharing scheme to ensure a secure communication is important. In this paper, we propose a new key-sharing scheme for groups, which shares a group key in a single broadcast without being dependent on the number of nodes. This scheme is based on geometric characteristics and has information-theoretic security in the analysis of transmitted data. We compared our scheme with conventional schemes in terms of communication traffic, computational complexity, flexibility, and security, and the results showed that our scheme is suitable for an Internet-of-Things (IoT) network.
Cloud computing enables the outsourcing of big data analytics, where a third-party server is responsible for data management and processing. In this paper, we consider the outsourcing model in which a third-party server provides record matching as a service. In particular, given a target record, the service provider returns all records from the outsourced dataset that match the target according to specific distance metrics. Identifying matching records in databases plays an important role in information integration and entity resolution. A major security concern of this outsourcing paradigm is whether the service provider returns the correct record matching results. To solve the problem, we design EARRING, an Efficient Authentication of outsouRced Record matchING framework. EARRING requires the service provider to construct the verification object (VO) of the record matching results. From the VO, the client is able to catch any incorrect result with cheap computational cost. Experiment results on real-world datasets demonstrate the efficiency of EARRING.