Visible to the public Biblio

Filters: Keyword is distributed denial of service  [Clear All Filters]
2023-02-17
Heseding, Hauke, Zitterbart, Martina.  2022.  ReCEIF: Reinforcement Learning-Controlled Effective Ingress Filtering. 2022 IEEE 47th Conference on Local Computer Networks (LCN). :106–113.
Volumetric Distributed Denial of Service attacks forcefully disrupt the availability of online services by congesting network links with arbitrary high-volume traffic. This brute force approach has collateral impact on the upstream network infrastructure, making early attack traffic removal a key objective. To reduce infrastructure load and maintain service availability, we introduce ReCEIF, a topology-independent mitigation strategy for early, rule-based ingress filtering leveraging deep reinforcement learning. ReCEIF utilizes hierarchical heavy hitters to monitor traffic distribution and detect subnets that are sending high-volume traffic. Deep reinforcement learning subsequently serves to refine hierarchical heavy hitters into effective filter rules that can be propagated upstream to discard traffic originating from attacking systems. Evaluating all filter rules requires only a single clock cycle when utilizing fast ternary content-addressable memory, which is commonly available in software defined networks. To outline the effectiveness of our approach, we conduct a comparative evaluation to reinforcement learning-based router throttling.
2022-04-13
Vieira, Alfredo Menezes, Junior, Rubens de Souza Matos, Ribeiro, Admilson de Ribamar Lima.  2021.  Systematic Mapping on Prevention of DDoS Attacks on Software Defined Networks. 2021 IEEE International Systems Conference (SysCon). :1—8.
Cyber attacks are a major concern for network administrators as the occurrences of such events are continuously increasing on the Internet. Software-defined networks (SDN) enable many management applications, but they may also become targets for attackers. Due to the separation of the data plane and the control plane, the controller appears as a new element in SDN networks, allowing centralized control of the network, becoming a strategic target in carrying out an attack. According to reports generated by security labs, the frequency of the distributed denial of service (DDoS) attacks has seen an increase in recent years, characterizing a major threat to the SDN. However, few research papers address the prevention of DDoS attacks on SDN. Therefore, this work presents a Systematic Mapping of Literature, aiming at identifying, classifying, and thus disseminating current research studies that propose techniques and methods for preventing DDoS attacks in SDN. When answering these questions, it was determined that the SDN controller was vulnerable to possible DDoS attacks. No prevention methods were found in the literature for the first phase of the attack (when attackers try to deceive users and infect the host). Therefore, the security of software-defined networks still needs improvement over DDoS attacks, despite the evident risk of an attack targeting the SDN controller.
He, Gaofeng, Si, Yongrui, Xiao, Xiancai, Wei, Qianfeng, Zhu, Haiting, Xu, Bingfeng.  2021.  Preventing IoT DDoS Attacks using Blockchain and IP Address Obfuscation. 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP). :1—5.
With the widespread deployment of Internet of Things (IoT) devices, hackers can use IoT devices to launch large-scale distributed denial of service (DDoS) attacks, which bring great harm to the Internet. However, how to defend against these attacks remains to be an open challenge. In this paper, we propose a novel prevention method for IoT DDoS attacks based on blockchain and obfuscation of IP addresses. Our observation is that IoT devices are usually resource-constrained and cannot support complicated cryptographic algorithms such as RSA. Based on the observation, we employ a novel authentication then communication mechanism for IoT DDoS attack prevention. In this mechanism, the attack targets' IP addresses are encrypted by a random security parameter. Clients need to be authenticated to obtain the random security parameter and decrypt the IP addresses. In particular, we propose to authenticate clients with public-key cryptography and a blockchain system. The complex authentication and IP address decryption operations disable IoT devices and thus block IoT DDoS attacks. The effectiveness of the proposed method is analyzed and validated by theoretical analysis and simulation experiments.
Gera, Jaideep, Rejeti, Venkata Kishore Kumar, Sekhar, Jaladi N Chandra, Shankar, A Siva.  2021.  Distributed Denial of Service Attack Prevention from Traffic Flow for Network Performance Enhancement. 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC). :406—413.
Customer Relationship Management (CRM), Supply Chain Management (SCM), banking, and e-commerce are just a few of the internet-primarily based commercial enterprise programmes that make use of distributed computing generation. These programmes are the principal target of large-scale attacks known as DDoS attacks, which cause the denial of service (DoS) of resources to legitimate customers. Servers that provide dependable services to real consumers in distributed environments are vulnerable to such attacks, which send phoney requests that appear legitimate. Flash crowd, on the other hand, is a massive collection of traffic generated by flash events that imitate Distributed Denial of Service assaults. Detecting and distinguishing between Distributed Denial of Service assaults and flash crowds is a difficult problem to tackle, as is preventing DDoS attacks. Existing solutions are generally intended for DDoS attacks or flash crowds, and more research is required to have a thorough understanding. This study presents a technique for distinguishing between different types of Distributed Denial of Service attacks and Flash Crowds. This research work has suggested an approach to prevent DDOS attacks in addition to detecting and discriminating. The performance of the suggested technique is validated using NS-2 simulations.
Zhou, Yansen, Chen, Qi, Wang, Yumiao.  2021.  Research on DDoS Attack Detection based on Multi-dimensional Entropy. 2021 IEEE 9th International Conference on Computer Science and Network Technology (ICCSNT). :65—69.
DDoS attack detection in a single dimension cannot cope with complex and new attacks. Aiming at the problems existing in single dimension detection, this paper proposes an algorithm to detect DDoS attack based on multi-dimensional entropy. Firstly, the algorithm selects multiple dimensions and establishes corresponding decision function for each dimension and calculates its information entropy. Secondly, the multidimensional sliding window CUSUM algorithm without parameters is used to synthesize the detection results of three dimensions to determine whether it is attacked by DDoS. Finally, the data set published by MIT Lincoln Laboratory is used for testing. Experimental results show that compared with single dimension detection algorithm, this method has good detection rate and low false alarm rate.
2022-01-10
Ugwu, Chukwuemeka Christian, Obe, Olumide Olayinka, Popoọla, Olugbemiga Solomon, Adetunmbi, Adebayo Olusọla.  2021.  A Distributed Denial of Service Attack Detection System using Long Short Term Memory with Singular Value Decomposition. 2020 IEEE 2nd International Conference on Cyberspac (CYBER NIGERIA). :112–118.
The increase in online activity during the COVID 19 pandemic has generated a surge in network traffic capable of expanding the scope of DDoS attacks. Cyber criminals can now afford to launch massive DDoS attacks capable of degrading the performances of conventional machine learning based IDS models. Hence, there is an urgent need for an effective DDoS attack detective model with the capacity to handle large magnitude of DDoS attack traffic. This study proposes a deep learning based DDoS attack detection system using Long Short Term Memory (LSTM). The proposed model was evaluated on UNSW-NB15 and NSL-KDD intrusion datasets, whereby twenty-three (23) and twenty (20) attack features were extracted from UNSW-NB15 and NSL-KDD, respectively using Singular Value Decomposition (SVD). The results from the proposed model show significant improvement when compared with results from some conventional machine learning techniques such as Naïve Bayes (NB), Decision Tree (DT), and Support Vector Machine (SVM) with accuracies of 94.28% and 90.59% on both datasets, respectively. Furthermore, comparative analysis of LSTM with other deep learning results reported in literature justified the choice of LSTM among its deep learning peers in detecting DDoS attacks over a network.
2021-11-08
Belej, Olexander.  2020.  Development of a Technique for Detecting "Distributed Denial-of-Service Attacks" in Security Systems of Wireless Sensor Network. 2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT). 1:316–319.
A distributed denial of service attack is a major security challenge in modern communications networks. In this article, we propose models that capture all the key performance indicators of synchronized denial of service protection mechanisms. As a result of the conducted researches, it is found out that thanks to the method of delay detection it is possible to recognize semi-open connections that are caused by synchronous flood and other attacks at an early stage. The study provides a mechanism for assessing the feasibility of introducing and changing the security system of a wireless sensor network. The proposed methodology will allow you to compare the mechanisms of combating denial of service for synchronized failures and choose the optimal protection settings in real-time.
2021-09-07
Atasever, Süreyya, Öz\c celık, İlker, Sa\u giro\u glu, \c Seref.  2020.  An Overview of Machine Learning Based Approaches in DDoS Detection. 2020 28th Signal Processing and Communications Applications Conference (SIU). :1–4.
Many detection approaches have been proposed to address growing threat of Distributed Denial of Service (DDoS) attacks on the Internet. The attack detection is the initial step in most of the mitigation systems. This study examined the methods used to detect DDoS attacks with the focus on learning based approaches. These approaches were compared based on their efficiency, operating load and scalability. Finally, it is discussed in details.
2021-02-16
Sumantra, I., Gandhi, S. Indira.  2020.  DDoS attack Detection and Mitigation in Software Defined Networks. 2020 International Conference on System, Computation, Automation and Networking (ICSCAN). :1—5.
This work aims to formulate an effective scheme which can detect and mitigate of Distributed Denial of Service (DDoS) attack in Software Defined Networks. Distributed Denial of Service attacks are one of the most destructive attacks in the internet. Whenever you heard of a website being hacked, it would have probably been a victim of a DDoS attack. A DDoS attack is aimed at disrupting the normal operation of a system by making service and resources unavailable to legitimate users by overloading the system with excessive superfluous traffic from distributed source. These distributed set of compromised hosts that performs the attack are referred as Botnet. Software Defined Networking being an emerging technology, offers a solution to reduce network management complexity. It separates the Control plane and the data plane. This decoupling provides centralized control of the network with programmability and flexibility. This work harness this programming ability and centralized control of SDN to obtain the randomness of the network flow data. This statistical approach utilizes the source IP in the network and various attributes of TCP flags and calculates entropy from them. The proposed technique can detect volume based and application based DDoS attacks like TCP SYN flood, Ping flood and Slow HTTP attacks. The methodology is evaluated through emulation using Mininet and Detection and mitigation strategies are implemented in POX controller. The experimental results show the proposed method have improved performance evaluation parameters including the Attack detection time, Delay to serve a legitimate request in the presence of attacker and overall CPU utilization.
2020-11-09
Kemp, C., Calvert, C., Khoshgoftaar, T..  2018.  Utilizing Netflow Data to Detect Slow Read Attacks. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :108–116.
Attackers can leverage several techniques to compromise computer networks, ranging from sophisticated malware to DDoS (Distributed Denial of Service) attacks that target the application layer. Application layer DDoS attacks, such as Slow Read, are implemented with just enough traffic to tie up CPU or memory resources causing web and application servers to go offline. Such attacks can mimic legitimate network requests making them difficult to detect. They also utilize less volume than traditional DDoS attacks. These low volume attack methods can often go undetected by network security solutions until it is too late. In this paper, we explore the use of machine learners for detecting Slow Read DDoS attacks on web servers at the application layer. Our approach uses a generated dataset based upon Netflow data collected at the application layer on a live network environment. Our Netflow data uses the IP Flow Information Export (IPFIX) standard providing significant flexibility and features. These Netflow features can process and handle a growing amount of traffic and have worked well in our previous DDoS work detecting evasion techniques. Our generated dataset consists of real-world network data collected from a production network. We use eight different classifiers to build Slow Read attack detection models. Our wide selection of learners provides us with a more comprehensive analysis of Slow Read detection models. Experimental results show that the machine learners were quite successful in identifying the Slow Read attacks with a high detection and low false alarm rate. The experiment demonstrates that our chosen Netflow features are discriminative enough to detect such attacks accurately.
2020-05-15
Ge, Mengmeng, Fu, Xiping, Syed, Naeem, Baig, Zubair, Teo, Gideon, Robles-Kelly, Antonio.  2019.  Deep Learning-Based Intrusion Detection for IoT Networks. 2019 IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC). :256—25609.

Internet of Things (IoT) has an immense potential for a plethora of applications ranging from healthcare automation to defence networks and the power grid. The security of an IoT network is essentially paramount to the security of the underlying computing and communication infrastructure. However, due to constrained resources and limited computational capabilities, IoT networks are prone to various attacks. Thus, safeguarding the IoT network from adversarial attacks is of vital importance and can be realised through planning and deployment of effective security controls; one such control being an intrusion detection system. In this paper, we present a novel intrusion detection scheme for IoT networks that classifies traffic flow through the application of deep learning concepts. We adopt a newly published IoT dataset and generate generic features from the field information in packet level. We develop a feed-forward neural networks model for binary and multi-class classification including denial of service, distributed denial of service, reconnaissance and information theft attacks against IoT devices. Results obtained through the evaluation of the proposed scheme via the processed dataset illustrate a high classification accuracy.

2019-12-18
Kirti, Agrawal, Namrata, Kumar, Sunil, Sah, D.K..  2018.  Prevention of DDoS Attack through Harmonic Homogeneity Difference Mechanism on Traffic Flow. 2018 4th International Conference on Recent Advances in Information Technology (RAIT). :1-6.

The ever rising attacks on IT infrastructure, especially on networks has become the cause of anxiety for the IT professionals and the people venturing in the cyber-world. There are numerous instances wherein the vulnerabilities in the network has been exploited by the attackers leading to huge financial loss. Distributed denial of service (DDoS) is one of the most indirect security attack on computer networks. Many active computer bots or zombies start flooding the servers with requests, but due to its distributed nature throughout the Internet, it cannot simply be terminated at server side. Once the DDoS attack initiates, it causes huge overhead to the servers in terms of its processing capability and service delivery. Though, the study and analysis of request packets may help in distinguishing the legitimate users from among the malicious attackers but such detection becomes non-viable due to continuous flooding of packets on servers and eventually leads to denial of service to the authorized users. In the present research, we propose traffic flow and flow count variable based prevention mechanism with the difference in homogeneity. Its simplicity and practical approach facilitates the detection of DDoS attack at the early stage which helps in prevention of the attack and the subsequent damage. Further, simulation result based on different instances of time has been shown on T-value including generation of simple and harmonic homogeneity for observing the real time request difference and gaps.

2019-06-10
Jánský, Tomáš, Čejka, Tomáš, Žádník, Martin, Bartoš, Václav.  2018.  Augmented DDoS Mitigation with Reputation Scores. Proceedings of the 13th International Conference on Availability, Reliability and Security. :54:1–54:7.

Network attacks, especially DoS and DDoS attacks, are a significant threat for all providers of services or infrastructure. The biggest attacks can paralyze even large-scale infrastructures of worldwide companies. Attack mitigation is a complex issue studied by many researchers and security companies. While several approaches were proposed, there is still space for improvement. This paper proposes to augment existing mitigation heuristic with knowledge of reputation score of network entities. The aim is to find a way to mitigate malicious traffic present in DDoS amplification attacks with minimal disruption to communication of legitimate traffic.

2019-05-01
Pillutla, H., Arjunan, A..  2018.  A Brief Review of Fuzzy Logic and Its Usage Towards Counter-Security Issues. 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :1-6.

Nowadays, most of the world's population has become much dependent on computers for banking, healthcare, shopping, and telecommunication. Security has now become a basic norm for computers and its resources since it has become inherently insecure. Security issues like Denial of Service attacks, TCP SYN Flooding attacks, Packet Dropping attacks and Distributed Denial of Service attacks are some of the methods by which unauthorized users make the resource unavailable to authorized users. There are several security mechanisms like Intrusion Detection System, Anomaly detection and Trust model by which we can be able to identify and counter the abuse of computer resources by unauthorized users. This paper presents a survey of several security mechanisms which have been implemented using Fuzzy logic. Fuzzy logic is one of the rapidly developing technologies, which is used in a sophisticated control system. Fuzzy logic deals with the degree of truth rather than the Boolean logic, which carries the values of either true or false. So instead of providing only two values, we will be able to define intermediate values.

2019-02-13
Prakash, A., Priyadarshini, R..  2018.  An Intelligent Software defined Network Controller for preventing Distributed Denial of Service Attack. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT). :585–589.

Software Defined Network (SDN) architecture is a new and novel way of network management mechanism. In SDN, switches do not process the incoming packets like conventional network computing environment. They match for the incoming packets in the forwarding tables and if there is none it will be sent to the controller for processing which is the operating system of the SDN. A Distributed Denial of Service (DDoS) attack is a biggest threat to cyber security in SDN network. The attack will occur at the network layer or the application layer of the compromised systems that are connected to the network. In this paper a machine learning based intelligent method is proposed which can detect the incoming packets as infected or not. The different machine learning algorithms adopted for accomplishing the task are Naive Bayes, K-Nearest neighbor (KNN) and Support vector machine (SVM) to detect the anomalous behavior of the data traffic. These three algorithms are compared according to their performances and KNN is found to be the suitable one over other two. The performance measure is taken here is the detection rate of infected packets.

Rashidi, B., Fung, C., Rahman, M..  2018.  A scalable and flexible DDoS mitigation system using network function virtualization. NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–6.
Distributed Denial of Service (DDoS) attacks remain one of the top threats to enterprise networks and ISPs nowadays. It can cause tremendous damage by bringing down online websites or services. Existing DDoS defense solutions either brings high cost such as upgrading existing firewall or IPS, or bring excessive traffic delay by using third-party cloud-based DDoS filtering services. In this work, we propose a DDoS defense framework that utilizes Network Function Virtualization (NFV) architecture to provide low cost and highly flexible solutions for enterprises. In particular, the system uses virtual network agents to perform attack traffic filtering before they are forwarded to the target server. Agents are created on demand to verify the authenticity of the source of packets, and drop spoofed packets in order protect the target server. Furthermore, we design a scalable and flexible dispatcher to forward packets to corresponding agents for processing. A bucket-based forwarding mechanism is used to improve the scalability of the dispatcher through batching forwarding. The dispatcher can also adapt to agent addition and removal. Our simulation results demonstrate that the dispatcher can effectively serve a large volume of traffic with low dropping rate. The system can successfully mitigate SYN flood attack by introducing minimal performance degradation to legitimate traffic.
2018-04-04
Zekri, M., Kafhali, S. E., Aboutabit, N., Saadi, Y..  2017.  DDoS attack detection using machine learning techniques in cloud computing environments. 2017 3rd International Conference of Cloud Computing Technologies and Applications (CloudTech). :1–7.

Cloud computing is a revolution in IT technology that provides scalable, virtualized on-demand resources to the end users with greater flexibility, less maintenance and reduced infrastructure cost. These resources are supervised by different management organizations and provided over Internet using known networking protocols, standards and formats. The underlying technologies and legacy protocols contain bugs and vulnerabilities that can open doors for intrusion by the attackers. Attacks as DDoS (Distributed Denial of Service) are ones of the most frequent that inflict serious damage and affect the cloud performance. In a DDoS attack, the attacker usually uses innocent compromised computers (called zombies) by taking advantages of known or unknown bugs and vulnerabilities to send a large number of packets from these already-captured zombies to a server. This may occupy a major portion of network bandwidth of the victim cloud infrastructures or consume much of the servers time. Thus, in this work, we designed a DDoS detection system based on the C.4.5 algorithm to mitigate the DDoS threat. This algorithm, coupled with signature detection techniques, generates a decision tree to perform automatic, effective detection of signatures attacks for DDoS flooding attacks. To validate our system, we selected other machine learning techniques and compared the obtained results.

2018-02-21
Diovu, R. C., Agee, J. T..  2017.  Quantitative analysis of firewall security under DDoS attacks in smart grid AMI networks. 2017 IEEE 3rd International Conference on Electro-Technology for National Development (NIGERCON). :696–701.

One of the key objectives of distributed denial of service (DDoS) attack on the smart grid advanced metering infrastructure is to threaten the availability of end user's metering data. This will surely disrupt the smooth operations of the grid and third party operators who need this data for billing and other grid control purposes. In previous work, we proposed a cloud-based Openflow firewall for mitigation against DDoS attack in a smart grid AMI. In this paper, PRISM model checker is used to perform a probabilistic best-and worst-case analysis of the firewall with regard to DDoS attack success under different firewall detection probabilities ranging from zero to 1. The results from this quantitative analysis can be useful in determining the extent the DDoS attack can undermine the correctness and performance of the firewall. In addition, the study can also be helpful in knowing the extent the firewall can be improved by applying the knowledge derived from the worst-case performance of the firewall.

2018-01-16
Liu, Jing, Lai, Yingxu, Zhang, Shixuan.  2017.  FL-GUARD: A Detection and Defense System for DDoS Attack in SDN. Proceedings of the 2017 International Conference on Cryptography, Security and Privacy. :107–111.

This paper proposed a new detection and prevention system against DDoS (Distributed Denial of Service) attack in SDN (software defined network) architecture, FL-GUARD (Floodlight-based guard system). Based on characteristics of SDN and centralized control, etc., FL-GUARD applies dynamic IP address binding to solve the problem of IP spoofing, and uses 3.3.2 C-SVM algorithm to detect attacks, and finally take advantage of the centralized control of software-defined network to issue flow tables to block attacks at the source port. The experiment results show the effectiveness of our system. The modular design of FL-GUARD lays a good foundation for the future improvement.

Boite, J., Nardin, P. A., Rebecchi, F., Bouet, M., Conan, V..  2017.  Statesec: Stateful monitoring for DDoS protection in software defined networks. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.

Software-Defined Networking (SDN) allows for fast reactions to security threats by dynamically enforcing simple forwarding rules as counter-measures. However, in classic SDN all the intelligence resides at the controller, with the switches only capable of performing stateless forwarding as ruled by the controller. It follows that the controller, in addition to network management and control duties, must collect and process any piece of information required to take advanced (stateful) forwarding decisions. This threatens both to overload the controller and to congest the control channel. On the other hand, stateful SDN represents a new concept, developed both to improve reactivity and to offload the controller and the control channel by delegating local treatments to the switches. In this paper, we adopt this stateful paradigm to protect end-hosts from Distributed Denial of Service (DDoS). We propose StateSec, a novel approach based on in-switch processing capabilities to detect and mitigate DDoS attacks. StateSec monitors packets matching configurable traffic features (e.g., IP src/dst, port src/dst) without resorting to the controller. By feeding an entropy-based algorithm with such monitoring features, StateSec detects and mitigates several threats such as (D)DoS and port scans with high accuracy. We implemented StateSec and compared it with a state-of-the-art approach to monitor traffic in SDN. We show that StateSec is more efficient: it achieves very accurate detection levels, limiting at the same time the control plane overhead.

Diovu, R. C., Agee, J. T..  2017.  A cloud-based openflow firewall for mitigation against DDoS attacks in smart grid AMI networks. 2017 IEEE PES PowerAfrica. :28–33.

Recent architectures for the advanced metering infrastructure (AMI) have incorporated several back-end systems that handle billing and other smart grid control operations. The non-availability of metering data when needed or the untimely delivery of data needed for control operations will undermine the activities of these back-end systems. Unfortunately, there are concerns that cyber attacks such as distributed denial of service (DDoS) will manifest in magnitude and complexity in a smart grid AMI network. Such attacks will range from a delay in the availability of end user's metering data to complete denial in the case of a grounded network. This paper proposes a cloud-based (IaaS) firewall for the mitigation of DDoS attacks in a smart grid AMI network. The proposed firewall has the ability of not only mitigating the effects of DDoS attack but can prevent the attack before they are launched. Our proposed firewall system leverages on cloud computing technology which has an added advantage of reducing the burden of data computations and storage for smart grid AMI back-end systems. The openflow firewall proposed in this study is a better security solution with regards to the traditional on-premises DoS solutions which cannot cope with the wide range of new attacks targeting the smart grid AMI network infrastructure. Simulation results generated from the study show that our model can guarantee the availability of metering/control data and could be used to improve the QoS of the smart grid AMI network under a DDoS attack scenario.

Hyun, D., Kim, J., Hong, D., Jeong, J. P..  2017.  SDN-based network security functions for effective DDoS attack mitigation. 2017 International Conference on Information and Communication Technology Convergence (ICTC). :834–839.

Distributed Denial of Service (DDoS) attack has been bringing serious security concerns on banks, finance incorporation, public institutions, and data centers. Also, the emerging wave of Internet of Things (IoT) raises new concerns on the smart devices. Software Defined Networking (SDN) and Network Functions Virtualization (NFV) have provided a new paradigm for network security. In this paper, we propose a new method to efficiently prevent DDoS attacks, based on a SDN/NFV framework. To resolve the problem that normal packets are blocked due to the inspection on suspicious packets, we developed a threshold-based method that provides a client with an efficient, fast DDoS attack mitigation. In addition, we use open source code to develop the security functions in order to implement our solution for SDN-based network security functions. The source code is based on NETCONF protocol [1] and YANG Data Model [2].

Kansal, V., Dave, M..  2017.  Proactive DDoS attack detection and isolation. 2017 International Conference on Computer, Communications and Electronics (Comptelix). :334–338.

The increased number of cyber attacks makes the availability of services a major security concern. One common type of cyber threat is distributed denial of service (DDoS). A DDoS attack is aimed at disrupting the legitimate users from accessing the services. It is easier for an insider having legitimate access to the system to deceive any security controls resulting in insider attack. This paper proposes an Early Detection and Isolation Policy (EDIP)to mitigate insider-assisted DDoS attacks. EDIP detects insider among all legitimate clients present in the system at proxy level and isolate it from innocent clients by migrating it to attack proxy. Further an effective algorithm for detection and isolation of insider is developed with the aim of maximizing attack isolation while minimizing disruption to benign clients. In addition, concept of load balancing is used to prevent proxies from getting overloaded.

2017-12-28
Manoja, I., Sk, N. S., Rani, D. R..  2017.  Prevention of DDoS attacks in cloud environment. 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC). :235–239.

Cloud computing emerges as an endowment technological data for the longer term and increasing on one of the standards of utility computing is most likely claimed to symbolize a wholly new paradigm for viewing and getting access to computational assets. As a result of protection problem many purchasers hesitate in relocating their touchy data on the clouds, regardless of gigantic curiosity in cloud-based computing. Security is a tremendous hassle, considering the fact that so much of firms present a alluring goal for intruders and the particular considerations will pursue to lower the advancement of distributed computing if not located. Hence, this recent scan and perception is suitable to honeypot. Distributed Denial of Service (DDoS) is an assault that threats the availability of the cloud services. It's fundamental investigate the most important features of DDoS Defence procedures. This paper provides exact techniques that been carried out to the DDoS attack. These approaches are outlined in these paper and use of applied sciences for special kind of malfunctioning within the cloud.

2017-10-27
Samson, A., Gopalan, N. P..  2016.  Software Defined Networking: Identification of Pathways for Security Threats. Proceedings of the International Conference on Informatics and Analytics. :16:1–16:6.
As Industries and Data Center plan to implement Software Defined Networking (SDN), the main concern is the anxiety about security. The Industries and Data Centers are curious to know how a SDN product will support them that their data, supporting applications and built in infrastructure are not vulnerable to threats. The initiation of SDN, will demand new pathways for securing control plane traffic. The traditional networks usually trust switching intelligence to implement various defense mechanisms besides known attacks. Many attacks which distress traditional networks also affect SDNs, partially due to SDN architecture complexities and most prominent among them is DoS. This paper identifies the pathways of threats to SDN systems and discuss methods to ways to mitigate them.