Azakami, T., Shibata, C., Uda, R..
2017.
Challenge to Impede Deep Learning against CAPTCHA with Ergonomic Design. 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 1:637–642.
Once we had tried to propose an unbreakable CAPTCHA and we reached a result that limitation of time is effect to prevent computers from recognizing characters accurately while computers can finally recognize all text-based CAPTCHA in unlimited time. One of the existing usual ways to prevent computers from recognizing characters is distortion, and adding noise is also effective for the prevention. However, these kinds of prevention also make recognition of characters by human beings difficult. As a solution of the problems, an effective text-based CAPTCHA algorithm with amodal completion was proposed by our team. Our CAPTCHA causes computers a large amount of calculation costs while amodal completion helps human beings to recognize characters momentarily. Our CAPTCHA has evolved with aftereffects and combinations of complementary colors. We evaluated our CAPTCHA with deep learning which is attracting the most attention since deep learning is faster and more accurate than existing methods for recognition with computers. In this paper, we add jagged lines to edges of characters since edges are one of the most important parts for recognition in deep learning. In this paper, we also evaluate that how much the jagged lines decrease recognition of human beings and how much they prevent computers from the recognition. We confirm the effects of our method to deep learning.
An, G., Yu, W..
2017.
CAPTCHA Recognition Algorithm Based on the Relative Shape Context and Point Pattern Matching. 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). :168–172.
Using shape context descriptors in the distance uneven grouping and its more extensive description of the shape feature, so this descriptor has the target contour point set deformation invariance. However, the twisted adhesions verification code have more outliers and more serious noise, the above-mentioned invariance of the shape context will become very bad, in order to solve the above descriptors' limitations, this article raise a new algorithm based on the relative shape context and point pattern matching to identify codes. And also experimented on the CSDN site's verification code, the result is that the recognition rate is higher than the traditional shape context and the response time is shorter.
Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M..
2017.
Combining convolutional neural network and self-adaptive algorithm to defeat synthetic multi-digit text-based CAPTCHA. 2017 IEEE International Conference on Industrial Technology (ICIT). :980–985.
We always use CAPTCHA(Completely Automated Public Turing test to Tell Computers and Humans Apart) to prevent automated bot for data entry. Although there are various kinds of CAPTCHAs, text-based scheme is still applied most widely, because it is one of the most convenient and user-friendly way for daily user [1]. The fact is that segmentations of different types of CAPTCHAs are not always the same, which means one of CAPTCHA's bottleneck is the segmentation. Once we could accurately split the character, the problem could be solved much easier. Unfortunately, the best way to divide them is still case by case, which is to say there is no universal way to achieve it. In this paper, we present a novel algorithm to achieve state-of-the-art performance, what was more, we also constructed a new convolutional neural network as an add-on recognition part to stabilize our state-of-the-art performance of the whole CAPTCHA system. The CAPTCHA datasets we are using is from the State Administration for Industry& Commerce of the People's Republic of China. In this datasets, there are totally 33 entrances of CAPTCHAs. In this experiments, we assume that each of the entrance is known. Results are provided showing how our algorithms work well towards these CAPTCHAs.
Le, T. A., Baydin, A. G., Zinkov, R., Wood, F..
2017.
Using synthetic data to train neural networks is model-based reasoning. 2017 International Joint Conference on Neural Networks (IJCNN). :3514–3521.
We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.
Koning, R., Graaff, B. D., Meijer, R., Laat, C. D., Grosso, P..
2017.
Measuring the effectiveness of SDN mitigations against cyber attacks. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–6.
To address increasing problems caused by cyber attacks, we leverage Software Defined networks and Network Function Virtualisation governed by a SARNET-agent to enable autonomous response and attack mitigation. A Secure Autonomous Response Network (SARNET) uses a control loop to constantly assess the security state of the network by means of observables. Using a prototype we introduce the metrics impact and effectiveness and show how they can be used to compare and evaluate countermeasures. These metrics become building blocks for self learning SARNET which exhibit true autonomous response.
Althamary, I. A., El-Alfy, E. S. M..
2017.
A more secure scheme for CAPTCHA-based authentication in cloud environment. 2017 8th International Conference on Information Technology (ICIT). :405–411.
Cloud computing is a remarkable model for permitting on-demand network access to an elastic collection of configurable adaptive resources and features including storage, software, infrastructure, and platform. However, there are major concerns about security-related issues. A very critical security function is user authentication using passwords. Although many flaws have been discovered in password-based authentication, it remains the most convenient approach that people continue to utilize. Several schemes have been proposed to strengthen its effectiveness such as salted hashes, one-time password (OTP), single-sign-on (SSO) and multi-factor authentication (MFA). This study proposes a new authentication mechanism by combining user's password and modified characters of CAPTCHA to generate a passkey. The modification of the CAPTCHA depends on a secret agreed upon between the cloud provider and the user to employ different characters for some characters in the CAPTCHA. This scheme prevents various attacks including short-password attack, dictionary attack, keylogger, phishing, and social engineering. Moreover, it can resolve the issue of password guessing and the use of a single password for different cloud providers.
Lukaseder, T., Hunt, A., Stehle, C., Wagner, D., Heijden, R. v d, Kargl, F..
2017.
An Extensible Host-Agnostic Framework for SDN-Assisted DDoS-Mitigation. 2017 IEEE 42nd Conference on Local Computer Networks (LCN). :619–622.
Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few (\textbackslashtextless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- \textbackslashtextbar\textbackslashtextbar
Liu, Z., Liu, Y., Winter, P., Mittal, P., Hu, Y. C..
2017.
TorPolice: Towards enforcing service-defined access policies for anonymous communication in the Tor network. 2017 IEEE 25th International Conference on Network Protocols (ICNP). :1–10.
Tor is the most widely used anonymity network, currently serving millions of users each day. However, there is no access control in place for all these users, leaving the network vulnerable to botnet abuse and attacks. For example, criminals frequently use exit relays as stepping stones for attacks, causing service providers to serve CAPTCHAs to exit relay IP addresses or blacklisting them altogether, which leads to severe usability issues for legitimate Tor users. To address this problem, we propose TorPolice, the first privacy-preserving access control framework for Tor. TorPolice enables abuse-plagued service providers such as Yelp to enforce access rules to police and throttle malicious requests coming from Tor while still providing service to legitimate Tor users. Further, TorPolice equips Tor with global access control for relays, enhancing Tor's resilience to botnet abuse. We show that TorPolice preserves the privacy of Tor users, implement a prototype of TorPolice, and perform extensive evaluations to validate our design goals.
Yamaguchi, M., Kikuchi, H..
2017.
Audio-CAPTCHA with distinction between random phoneme sequences and words spoken by multi-speaker. 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). :3071–3076.
Audio-CAPTCHA prevents malicious bots from attacking Web services and provides Web accessibility for visually-impaired persons. Most of the conventional methods employ statistical noise to distort sounds and let users remember and spell the words, which are difficult and laborious work for humans. In this paper, we utilize the difficulty on speaker-independent recognition for ASR machines instead of distortion with statistical noise. Our scheme synthesizes various voices by changing voice speed, pitch and native language of speakers. Moreover, we employ semantic identification problems between random phoneme sequences and meaningful words to release users from remembering and spelling words, so it improves the accuracy of humans and usability. We also evaluated our scheme in several experiments.
Kumar, S. A., Kumar, N. R., Prakash, S., Sangeetha, K..
2017.
Gamification of internet security by next generation CAPTCHAs. 2017 International Conference on Computer Communication and Informatics (ICCCI). :1–5.
CAPTCHA is a type of challenge-response test to ensure that the response is only generated by humans and not by computerized robots. CAPTCHA are getting harder as because usage of latest advanced pattern recognition and machine learning algorithms are capable of solving simpler CAPTCHA. However, some enhancement procedures make the CAPTCHAs too difficult to be recognized by the human. This paper resolves the problem by next generation human-friendly mini game-CAPTCHA for quantifying the usability of CAPTCHAs.