Visible to the public Biblio

Filters: Keyword is CRC  [Clear All Filters]
2022-05-19
Ali, Nora A., Shokry, Beatrice, Rumman, Mahmoud H., ElSayed, Hany M., Amer, Hassanein H., Elsoudani, Magdy S..  2021.  Low-overhead Solutions For Preventing Information Leakage Due To Hardware Trojan Horses. 2021 16th International Conference on Computer Engineering and Systems (ICCES). :1–5.
The utilization of Third-party modules is very common nowadays. Hence, combating Hardware Trojans affecting the applications' functionality and data security becomes inevitably essential. This paper focuses on the detection/masking of Hardware Trojans' undesirable effects concerned with spying and information leakage due to the growing care about applications' data confidentiality. It is assumed here that the Trojan-infected system consists mainly of a Microprocessor module (MP) followed by an encryption module and then a Medium Access Control (MAC) module. Also, the system can be application-specific integrated circuit (ASIC) based or Field Programmable Gate Arrays (FPGA) based. A general solution, including encryption, CRC encoder/decoder, and zero padding modules, is presented to handle such Trojans. Special cases are then discussed carefully to prove that Trojans will be detected/masked with a corresponding overhead that depends on the Trojan's location, and the system's need for encryption. An implementation of the CRC encoder along with the zero padding module is carried out on an Altera Cyclone IV E FPGA to illustrate the extra resource utilization required by such a system, given that it is already using encryption.
2019-12-18
Atkinson, Simon Reay, Walker, David, Beaulne, Kevin, Hossain, Liaquat.  2012.  Cyber – Transparencies, Assurance and Deterrence. 2012 International Conference on Cyber Security. :119–126.
Cyber-has often been considered as a coordination and control, as opposed to collaborative influence, media. This conceptual-design paper, uniquely, builds upon a number of entangled, cross disciplinary research strands – integrating engineering and conflict studies – and a detailed literature review to propose a new paradigm of assurance and deterrence models. We consider an ontology for Cyber-sûréte, which combines both the social trusts necessary for [knowledge &, information] assurance such as collaboration by social influence (CSI) and the technological controls and rules for secure information management referred as coordination by rule and control (CRC). We posit Cyber-sûréte as enabling both a 'safe-to-fail' ecology (in which learning, testing and adaptation can take place) within a fail-safe supervisory control and data acquisition (SCADA type) system, e.g. in a nuclear power plant. Building upon traditional state-based threat analysis, we consider Warning Time and the Threat equation with relation to policies for managing Cyber-Deterrence. We examine how the goods of Cyber-might be galvanised so as to encourage virtuous behaviour and deter and / or dissuade ne'er-do-wells through multiple transparencies. We consider how the Deterrence-escalator may be managed by identifying both weak influence and strong control signals so as to create a more benign and responsive cyber-ecology, in which strengths can be exploited and weaknesses identified. Finally, we consider declaratory / mutual transparencies as opposed to legalistic / controlled transparency.
2017-12-20
Shi, Z., Chen, J., Chen, S., Ren, S..  2017.  A lightweight RFID authentication protocol with confidentiality and anonymity. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1631–1634.

Radio Frequency IDentification(RFID) is one of the most important sensing techniques for Internet of Things(IoT) and RFID systems have been applied to various different fields. But an RFID system usually uses open wireless radio wave to communicate and this will lead to a serious threat to its privacy and security. The current popular RFID tags are some low-cost passive tags. Their computation and storage resources are very limited. It is not feasible for them to complete some complicated cryptographic operations. So it is very difficult to protect the security and privacy of an RFID system. Lightweight authentication protocol is considered as an effective approach. Many typical authentication protocols usually use Hash functions so that they require more computation and storage resources. Based on CRC function, we propose a lightweight RFID authentication protocol, which needs less computation and storage resources than Hash functions. This protocol exploits an on-chip CRC function and a pseudorandom number generator to ensure the anonymity and freshness of communications between reader and tag. It provides forward security and confidential communication. It can prevent eavesdropping, location trace, replay attack, spoofing and DOS-attack effectively. It is very suitable to be applied to RFID systems.