Kaul, Sonam Devgan, Hatzinakos, Dimitrios.
2019.
Learning Automata Based Secure Multi Agent RFID Authentication System. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–7.
Radio frequency identification wireless sensing technology widely adopted and developed from last decade and has been utilized for monitoring and autonomous identification of objects. However, wider utilization of RFID technologies has introduced challenges such as preserving security and privacy of sensitive data while maintaining the high quality of service. Thus, in this work, we will deliberately build up a RFID system by utilizing learning automata based multi agent intelligent system to greatly enhance and secure message transactions and to improve operational efficiency. The incorporation of these two advancements and technological developments will provide maximum benefit in terms of expertly and securely handle data in RFID scenario. In proposed work, learning automata inbuilt RFID tags or assumed players choose their optimal strategy via enlarging its own utility function to achieve long term benefit. This is possible if they transmit their utility securely to back end server and then correspondingly safely get new utility function from server to behave optimally in its environment. Hence, our proposed authentication protocol, expertly transfer utility from learning automata inbuilt tags to reader and then to server. Moreover, we verify the security and privacy of our proposed system by utilizing automatic formal prover Scyther tool.
Al-Adhami, Ayad H., Ambroze, Marcel, Stengel, Ingo, Tomlinson, Martin.
2019.
An Effencient Improvement of RFID Authentication Protocol Using Hash Function ZKP. 2019 2nd Scientific Conference of Computer Sciences (SCCS). :87–92.
The applications of Radio Frequency Identification (RFID) technology has been rapidly developed to be used in different fields that require automatic identification of objects and managing information. The advantage of employing RFID systems is to facilitate automatic identification of objects from distance without any interaction with tagged objects and without using a line of sight as compared with barcode. However, security and privacy constitute a challenge to RFID system as RFID systems use the wireless communication. Many researchers have introduced elliptical curve cryptographic (ECC) solutions to the security and privacy in RFID system as an ideal cryptosystem to be implemented with RFID technology. However, most of these solutions do not have provide adequate protection. Moreover, in terms of integrity and confidentiality level, most of these authentication protocols still vulnerable to some of security and privacy attacks. Based on these facts, this paper proposes a mutual authentication protocol that aims at enhancing an existing RFID authentication protocol that suffers from tracking attack and man-in-the-middle attack (MITM). The enhancement is accomplished by improving the security and privacy level against MITM, tracking attack and other related attacks. The proposed protocol is dependent on use the elliptical curve version of Schnorr identification protocol in combination with Keccak hash function. This combination leads to enhance the confidentiality and integrity level of the RFID authentication system and increase the privacy protection.
Wang, Song, Zhang, Bo.
2019.
Research on RFID Information Security Technology Based on Elliptic Curve Algorithms. 2019 International Conference on Communications, Information System and Computer Engineering (CISCE). :386–389.
The security problem of RFID system is a great potential security hazard in its application. Due to the limitation of hardware conditions, traditional public key cryptography can not be directly used in security mechanism. Compared with the traditional RSA public key cryptography, the elliptic curve cryptography has the advantages of shorter key, faster processing speed and smaller storage space, which is very suitable for use in the RFID system.