Visible to the public Biblio

Filters: Keyword is principal component analysis  [Clear All Filters]
2023-03-31
Liu, Pengjuan, Ma, Jindou.  2022.  Rolling Bearing Fault Diagnosis based on Deep Belief Network. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :685–688.
In view of the characteristics that rolling bearing is prone to failure under actual working conditions, and it is difficult to classify the fault category and fault degree, the deep belief network is introduced to diagnose the rolling bearing fault. Firstly, principal component analysis is used to reduce the dimension of original input data and delete redundant input information. Then, the dimension reduced data are input into the deep belief network to extract the low dimensional fault feature representation, and the extracted features are input into the classifier for rolling bearing fault pattern recognition. Finally, the diagnosis effect of the proposed network is compared with the existing common shallow neural network. The simulation experiment is carried out through the bearing data in the United States.
2022-09-09
Lin, Yier, Tian, Yin.  2021.  The Short-Time Fourier Transform based WiFi Human Activity Classification Algorithm. 2021 17th International Conference on Computational Intelligence and Security (CIS). :30—34.
The accurate classification of WiFi-based activity patterns is still an open problem and is critical to detect behavior for non-visualization applications. This paper proposes a novel approach that uses WiFi-based IQ data and short-time Fourier transform (STFT) time-frequency images to automatically and accurately classify human activities. The offsets features, calculated from time-domain values and one-dimensional principal component analysis (1D-PCA) values and two-dimensional principal component analysis (2D-PCA) values, are applied as features to input the classifiers. The machine learning methods such as the bagging, boosting, support vector machine (SVM), random forests (RF) as the classifier to output the performance. The experimental data validate our proposed method with 15000 experimental samples from five categories of WiFi signals (empty, marching on the spot, rope skipping, both arms rotating;singlearm rotating). The results show that the method companying with the RF classifier surpasses the approach with alternative classifiers on classification performance and finally obtains a 62.66% classification rate, 85.06% mean accuracy, and 90.67% mean specificity.
2022-03-08
Liu, Yuanle, Xu, Chengjie, Wang, Yanwei, Yang, Weidong, Zheng, Ying.  2021.  Multidimensional Reconstruction-Based Contribution for Multiple Faults Isolation with k-Nearest Neighbor Strategy. 2021 40th Chinese Control Conference (CCC). :4510–4515.
In the multivariable fault diagnosis of industrial process, due to the existence of correlation between variables, the result of fault diagnosis will inevitably appear "smearing" effect. Although the fault diagnosis method based on the contribution of multi-dimensional reconstruction is helpful when multiple faults occur. But in order to correctly isolate all the fault variables, this method will become very inefficient due to the combination of variables. In this paper, a fault diagnosis method based on kNN and MRBC is proposed to fundamentally avoid the corresponding influence of "smearing", and a fast variable selection strategy is designed to accelerate the process of fault isolation. Finally, simulation study on a benchmark process verifies the effectiveness of the method, in comparison with the traditional method represented by FDA-based method.
2021-12-21
Jeong, Jang Hyeon, Kim, Jong Beom, Choi, Seong Gon.  2021.  Zero-Day Attack Packet Highlighting System. 2021 23rd International Conference on Advanced Communication Technology (ICACT). :200–204.
This paper presents Zero-Day Attack Packet Highlighting System. Proposed system outputs zero-day attack packet information from flow extracted as result of regression inspection of packets stored in flow-based PCA. It also highlights raw data of the packet matched with rule. Also, we design communication protocols for sending and receiving data within proposed system. Purpose of the proposed system is to solve existing flow-based problems and provides users with raw data information of zero-day packets so that they can analyze raw data for the packets.
2021-11-08
Rashid, Junaid, Mahmood, Toqeer, Nisar, Muhammad Wasif, Nazir, Tahira.  2020.  Phishing Detection Using Machine Learning Technique. 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH). :43–46.
Today, everyone is highly dependent on the internet. Everyone performed online shopping and online activities such as online Bank, online booking, online recharge and more on internet. Phishing is a type of website threat and phishing is Illegally on the original website Information such as login id, password and information of credit card. This paper proposed an efficient machine learning based phishing detection technique. Overall, experimental results show that the proposed technique, when integrated with the Support vector machine classifier, has the best performance of accurately distinguishing 95.66% of phishing and appropriate websites using only 22.5% of the innovative functionality. The proposed technique exhibits optimistic results when benchmarking with a range of standard phishing datasets of the “University of California Irvine (UCI)” archive. Therefore, proposed technique is preferred and used for phishing detection based on machine learning.
2021-10-12
Musleh, Ahmed S., Chen, Guo, Dong, Zhao Yang, Wang, Chen, Chen, Shiping.  2020.  Statistical Techniques-Based Characterization of FDIA in Smart Grids Considering Grid Contingencies. 2020 International Conference on Smart Grids and Energy Systems (SGES). :83–88.
False data injection attack (FDIA) is a real threat to smart grids due to its wide range of vulnerabilities and impacts. Designing a proper detection scheme for FDIA is the 1stcritical step in defending the attack in smart grids. In this paper, we investigate two main statistical techniques-based approaches in this regard. The first is based on the principal component analysis (PCA), and the second is based on the canonical correlation analysis (CCA). The test cases illustrate a better characterization performance of FDIA using CCA compared to the PCA. Further, CCA provides a better differentiation of FDIA from normal grid contingencies. On the other hand, PCA provides a significantly reduced false alarm rate.
2021-09-08
Ali, Jehad, Roh, Byeong-hee, Lee, Byungkyu, Oh, Jimyung, Adil, Muhammad.  2020.  A Machine Learning Framework for Prevention of Software-Defined Networking Controller from DDoS Attacks and Dimensionality Reduction of Big Data. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :515–519.
The controller is an indispensable entity in software-defined networking (SDN), as it maintains a global view of the underlying network. However, if the controller fails to respond to the network due to a distributed denial of service (DDoS) attacks. Then, the attacker takes charge of the whole network via launching a spoof controller and can also modify the flow tables. Hence, faster, and accurate detection of DDoS attacks against the controller will make the SDN reliable and secure. Moreover, the Internet traffic is drastically increasing due to unprecedented growth of connected devices. Consequently, the processing of large number of requests cause a performance bottleneck regarding SDN controller. In this paper, we propose a hierarchical control plane SDN architecture for multi-domain communication that uses a statistical method called principal component analysis (PCA) to reduce the dimensionality of the big data traffic and the support vector machine (SVM) classifier is employed to detect a DDoS attack. SVM has high accuracy and less false positive rate while the PCA filters attribute drastically. Consequently, the performance of classification and accuracy is improved while the false positive rate is reduced.
2021-08-17
Shen, Xingfa, Yan, Guo, Yang, Jian, Xu, Sheng.  2020.  WiPass: CSI-based Keystroke Recognition for Numerical Keypad of Smartphones. 2020 35th Youth Academic Annual Conference of Chinese Association of Automation (YAC). :276—283.
Nowadays, smartphones are everywhere. They play an indispensable role in our lives and makes people convenient to communicate, pay, socialize, etc. However, they also bring a lot of security and privacy risks. Keystroke operations of numeric keypad are often required when users input password to perform mobile payment or input other privacy-sensitive information. Different keystrokes may cause different finger movements that will bring different interference to WiFi signal, which may be reflected by channel state information (CSI). In this paper, we propose WiPass, a password-keystroke recognition system for numerical keypad input on smartphones, which especially occurs frequently in mobile payment APPs. Based on only a public WiFi hotspot deployed in the victim payment scenario, WiPass would extracts and analyzes the CSI data generated by the password-keystroke operation of the smartphone user, and infers the user's payment password by comparing the CSI waveforms of different keystrokes. We implemented the WiPass system by using COTS WiFi AP devices and smartphones. The average keystroke segmentation accuracy was 80.45%, and the average keystroke recognition accuracy was 74.24%.
2021-03-09
Muhammad, A., Asad, M., Javed, A. R..  2020.  Robust Early Stage Botnet Detection using Machine Learning. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1—6.

Among the different types of malware, botnets are rising as the most genuine risk against cybersecurity as they give a stage to criminal operations (e.g., Distributed Denial of Service (DDOS) attacks, malware dispersal, phishing, and click fraud and identity theft). Existing botnet detection techniques work only on specific botnet Command and Control (C&C) protocols and lack in providing early-stage botnet detection. In this paper, we propose an approach for early-stage botnet detection. The proposed approach first selects the optimal features using feature selection techniques. Next, it feeds these features to machine learning classifiers to evaluate the performance of the botnet detection. Experiments reveals that the proposed approach efficiently classifies normal and malicious traffic at an early stage. The proposed approach achieves the accuracy of 99%, True Positive Rate (TPR) of 0.99 %, and False Positive Rate (FPR) of 0.007 % and provide an efficient detection rate in comparison with the existing approach.

2021-03-04
Sejr, J. H., Zimek, A., Schneider-Kamp, P..  2020.  Explainable Detection of Zero Day Web Attacks. 2020 3rd International Conference on Data Intelligence and Security (ICDIS). :71—78.

The detection of malicious HTTP(S) requests is a pressing concern in cyber security, in particular given the proliferation of HTTP-based (micro-)service architectures. In addition to rule-based systems for known attacks, anomaly detection has been shown to be a promising approach for unknown (zero-day) attacks. This article extends existing work by integrating outlier explanations for individual requests into an end-to-end pipeline. These end-to-end explanations reflect the internal working of the pipeline. Empirically, we show that found explanations coincide with manually labelled explanations for identified outliers, allowing security professionals to quickly identify and understand malicious requests.

2021-02-23
Ratti, R., Singh, S. R., Nandi, S..  2020.  Towards implementing fast and scalable Network Intrusion Detection System using Entropy based Discretization Technique. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1—7.

With the advent of networking technologies and increasing network attacks, Intrusion Detection systems are apparently needed to stop attacks and malicious activities. Various frameworks and techniques have been developed to solve the problem of intrusion detection, still there is need for new frameworks as per the challenging scenario of enormous scale in data size and nature of attacks. Current IDS systems pose challenges on the throughput to work with high speed networks. In this paper we address the issue of high computational overhead of anomaly based IDS and propose the solution using discretization as a data preprocessing step which can drastically reduce the computation overhead. We propose method to provide near real time detection of attacks using only basic flow level features that can easily be extracted from network packets.

2021-02-15
Rana, M. M., Mehedie, A. M. Alam, Abdelhadi, A..  2020.  Optimal Image Watermark Technique Using Singular Value Decomposition with PCA. 2020 22nd International Conference on Advanced Communication Technology (ICACT). :342–347.
Image watermarking is very important phenomenon in modern society where intellectual property right of information is necessary. Considering this impending problem, there are many image watermarking methods exist in the literature each of having some key advantages and disadvantages. After summarising state-of-the-art literature survey, an optimum digital watermark technique using singular value decomposition with principle component analysis (PCA) is proposed and verified. Basically, the host image is compressed using PCA which reduces multi-dimensional data to effective low-dimensional information. In this scheme, the watermark is embedded using the discrete wavelet transformation-singular value decomposition approach. Simulation results show that the proposed method improves the system performance compared with the existing method in terms of the watermark embedding, and extraction time. Therefore, this work is valuable for image watermarking in modern life such as tracing copyright infringements and banknote authentication.
Uzhga-Rebrov, O., Kuleshova, G..  2020.  Using Singular Value Decomposition to Reduce Dimensionality of Initial Data Set. 2020 61st International Scientific Conference on Information Technology and Management Science of Riga Technical University (ITMS). :1–4.
The purpose of any data analysis is to extract essential information implicitly present in the data. To do this, it often seems necessary to transform the initial data into a form that allows one to identify and interpret the essential features of their structure. One of the most important tasks of data analysis is to reduce the dimension of the original data. The paper considers an approach to solving this problem based on singular value decomposition (SVD).
2021-01-25
Rizki, R. P., Hamidi, E. A. Z., Kamelia, L., Sururie, R. W..  2020.  Image Processing Technique for Smart Home Security Based On the Principal Component Analysis (PCA) Methods. 2020 6th International Conference on Wireless and Telematics (ICWT). :1–4.
Smart home is one application of the pervasive computing branch of science. Three categories of smart homes, namely comfort, healthcare, and security. The security system is a part of smart home technology that is very important because the intensity of crime is increasing, especially in residential areas. The system will detect the face by the webcam camera if the user enters the correct password. Face recognition will be processed by the Raspberry pi 3 microcontroller with the Principal Component Analysis method using OpenCV and Python software which has outputs, namely actuators in the form of a solenoid lock door and buzzer. The test results show that the webcam can perform face detection when the password input is successful, then the buzzer actuator can turn on when the database does not match the data taken by the webcam or the test data and the solenoid door lock actuator can run if the database matches the test data taken by the sensor. webcam. The mean response time of face detection is 1.35 seconds.
2020-12-28
Marichamy, V. S., Natarajan, V..  2020.  A Study of Big Data Security on a Partitional Clustering Algorithm with Perturbation Technique. 2020 International Conference on Smart Electronics and Communication (ICOSEC). :482—486.

Partitional Clustering Algorithm (PCA) on the Hadoop Distributed File System is to perform big data securities using the Perturbation Technique is the main idea of the proposed work. There are numerous clustering methods available that are used to categorize the information from the big data. PCA discovers the cluster based on the initial partition of the data. In this approach, it is possible to develop a security safeguarding of data that is impoverished to allow the calculations and communication. The performances were analyzed on Health Care database under the studies of various parameters like precision, accuracy, and F-score measure. The outcome of the results is to demonstrate that this method is used to decrease the complication in preserving privacy and better accuracy than that of the existing techniques.

2020-12-01
Abdulhammed, R., Faezipour, M., Musafer, H., Abuzneid, A..  2019.  Efficient Network Intrusion Detection Using PCA-Based Dimensionality Reduction of Features. 2019 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.

Designing a machine learning based network intrusion detection system (IDS) with high-dimensional features can lead to prolonged classification processes. This is while low-dimensional features can reduce these processes. Moreover, classification of network traffic with imbalanced class distributions has posed a significant drawback on the performance attainable by most well-known classifiers. With the presence of imbalanced data, the known metrics may fail to provide adequate information about the performance of the classifier. This study first uses Principal Component Analysis (PCA) as a feature dimensionality reduction approach. The resulting low-dimensional features are then used to build various classifiers such as Random Forest (RF), Bayesian Network, Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA) for designing an IDS. The experimental findings with low-dimensional features in binary and multi-class classification show better performance in terms of Detection Rate (DR), F-Measure, False Alarm Rate (FAR), and Accuracy. Furthermore, in this paper, we apply a Multi-Class Combined performance metric Combi ned Mc with respect to class distribution through incorporating FAR, DR, Accuracy, and class distribution parameters. In addition, we developed a uniform distribution based balancing approach to handle the imbalanced distribution of the minority class instances in the CICIDS2017 network intrusion dataset. We were able to reduce the CICIDS2017 dataset's feature dimensions from 81 to 10 using PCA, while maintaining a high accuracy of 99.6% in multi-class and binary classification.

2020-10-16
Tong, Weiming, Liu, Bingbing, Li, Zhongwei, Jin, Xianji.  2019.  Intrusion Detection Method of Industrial Control System Based on RIPCA-OCSVM. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :1148—1154.

In view of the problem that the intrusion detection method based on One-Class Support Vector Machine (OCSVM) could not detect the outliers within the industrial data, which results in the decision function deviating from the training sample, an anomaly intrusion detection algorithm based on Robust Incremental Principal Component Analysis (RIPCA) -OCSVM is proposed in this paper. The method uses RIPCA algorithm to remove outliers in industrial data sets and realize dimensionality reduction. In combination with the advantages of OCSVM on the single classification problem, an anomaly detection model is established, and the Improved Particle Swarm Optimization (IPSO) is used for model parameter optimization. The simulation results show that the method can efficiently and accurately identify attacks or abnormal behaviors while meeting the real-time requirements of the industrial control system (ICS).

2020-10-12
Sieu, Brandon, Gavrilova, Marina.  2019.  Person Identification from Visual Aesthetics Using Gene Expression Programming. 2019 International Conference on Cyberworlds (CW). :279–286.
The last decade has witnessed an increase in online human interactions, covering all aspects of personal and professional activities. Identification of people based on their behavior rather than physical traits is a growing industry, spanning diverse spheres such as online education, e-commerce and cyber security. One prominent behavior is the expression of opinions, commonly as a reaction to images posted online. Visual aesthetic is a soft, behavioral biometric that refers to a person's sense of fondness to a certain image. Identifying individuals using their visual aesthetics as discriminatory features is an emerging domain of research. This paper introduces a new method for aesthetic feature dimensionality reduction using gene expression programming. The advantage of this method is that the resulting system is capable of using a tree-based genetic approach for feature recombination. Reducing feature dimensionality improves classifier accuracy, reduces computation runtime, and minimizes required storage. The results obtained on a dataset of 200 Flickr users evaluating 40000 images demonstrates a 94% accuracy of identity recognition based solely on users' aesthetic preferences. This outperforms the best-known method by 13.5%.
Sharafaldin, Iman, Ghorbani, Ali A..  2018.  EagleEye: A Novel Visual Anomaly Detection Method. 2018 16th Annual Conference on Privacy, Security and Trust (PST). :1–6.
We propose a novel visualization technique (Eagle-Eye) for intrusion detection, which visualizes a host as a commu- nity of system call traces in two-dimensional space. The goal of EagleEye is to visually cluster the system call traces. Although human eyes can easily perceive anomalies using EagleEye view, we propose two different methods called SAM and CPM that use the concept of data depth to help administrators distinguish between normal and abnormal behaviors. Our experimental results conducted on Australian Defence Force Academy Linux Dataset (ADFA-LD), which is a modern system calls dataset that includes new exploits and attacks on various programs, show EagleEye's efficiency in detecting diverse exploits and attacks.
2020-10-06
Zaman, Tarannum Shaila, Han, Xue, Yu, Tingting.  2019.  SCMiner: Localizing System-Level Concurrency Faults from Large System Call Traces. 2019 34th IEEE/ACM International Conference on Automated Software Engineering (ASE). :515—526.

Localizing concurrency faults that occur in production is hard because, (1) detailed field data, such as user input, file content and interleaving schedule, may not be available to developers to reproduce the failure; (2) it is often impractical to assume the availability of multiple failing executions to localize the faults using existing techniques; (3) it is challenging to search for buggy locations in an application given limited runtime data; and, (4) concurrency failures at the system level often involve multiple processes or event handlers (e.g., software signals), which can not be handled by existing tools for diagnosing intra-process(thread-level) failures. To address these problems, we present SCMiner, a practical online bug diagnosis tool to help developers understand how a system-level concurrency fault happens based on the logs collected by the default system audit tools. SCMiner achieves online bug diagnosis to obviate the need for offline bug reproduction. SCMiner does not require code instrumentation on the production system or rely on the assumption of the availability of multiple failing executions. Specifically, after the system call traces are collected, SCMiner uses data mining and statistical anomaly detection techniques to identify the failure-inducing system call sequences. It then maps each abnormal sequence to specific application functions. We have conducted an empirical study on 19 real-world benchmarks. The results show that SCMiner is both effective and efficient at localizing system-level concurrency faults.

2020-07-03
Li, Feiyan, Li, Wei, Huo, Hongtao, Ran, Qiong.  2019.  Decision Fusion Based on Joint Low Rank and Sparse Component for Hyperspectral Image Classification. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :401—404.

Sparse and low rank matrix decomposition is a method that has recently been developed for estimating different components of hyperspectral data. The rank component is capable of preserving global data structures of data, while a sparse component can select the discriminative information by preserving details. In order to take advantage of both, we present a novel decision fusion based on joint low rank and sparse component (DFJLRS) method for hyperspectral imagery in this paper. First, we analyzed the effects of different components on classification results. Then a novel method adopts a decision fusion strategy which combines a SVM classifier with the information provided by joint sparse and low rank components. With combination of the advantages, the proposed method is both representative and discriminative. The proposed algorithm is evaluated using several hyperspectral images when compared with traditional counterparts.

2020-05-22
Rattaphun, Munlika, Prayoonwong, Amorntip, Chiu, Chih- Yi.  2019.  Indexing in k-Nearest Neighbor Graph by Hash-Based Hill-Climbing. 2019 16th International Conference on Machine Vision Applications (MVA). :1—4.
A main issue in approximate nearest neighbor search is to achieve an excellent tradeoff between search accuracy and computation cost. In this paper, we address this issue by leveraging k-nearest neighbor graph and hill-climbing to accelerate vector quantization in the query assignment process. A modified hill-climbing algorithm is proposed to traverse k-nearest neighbor graph to find closest centroids for a query, rather than calculating the query distances to all centroids. Instead of using random seeds in the original hill-climbing algorithm, we generate high-quality seeds based on the hashing technique. It can boost the query assignment efficiency due to a better start-up in hill-climbing. We evaluate the experiment on the benchmarks of SIFT1M and GIST1M datasets, and show the proposed hashing-based seed generation effectively improves the search performance.
2020-05-18
Zhou, Wei, Yang, Weidong, Wang, Yan, Zhang, Hong.  2018.  Generalized Reconstruction-Based Contribution for Multiple Faults Diagnosis with Bayesian Decision. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). :813–818.
In fault diagnosis of industrial process, there are usually more than one variable that are faulty. When multiple faults occur, the generalized reconstruction-based contribution can be helpful while traditional RBC may make mistakes. Due to the correlation between the variables, these faults usually propagate to other normal variables, which is called smearing effect. Thus, it is helpful to consider the pervious fault diagnosis results. In this paper, a data-driven fault diagnosis method which is based on generalized RBC and bayesian decision is presented. This method combines multi-dimensional RBC and bayesian decision. The proposed method improves the diagnosis capability of multiple and minor faults with greater noise. A numerical simulation example is given to show the effectiveness and superiority of the proposed method.
Wu, Lan, Su, Sheyan, Wen, Chenglin.  2018.  Multiple Fault Diagnosis Methods Based on Multilevel Multi-Granularity PCA. 2018 International Conference on Control, Automation and Information Sciences (ICCAIS). :566–570.
Principal Component Analysis (PCA) is a basic method of fault diagnosis based on multivariate statistical analysis. It utilizes the linear correlation between multiple process variables to implement process fault diagnosis and has been widely used. Traditional PCA fault diagnosis ignores the impact of faults with different magnitudes on detection accuracy. Based on a variety of data processing methods, this paper proposes a multi-level and multi-granularity principal component analysis method to make the detection results more accurate.
2020-05-08
Shen, Weiguo, Wang, Wei.  2018.  Node Identification in Wireless Network Based on Convolutional Neural Network. 2018 14th International Conference on Computational Intelligence and Security (CIS). :238—241.
Aiming at the problem of node identification in wireless networks, a method of node identification based on deep learning is proposed, which starts with the tiny features of nodes in radiofrequency layer. Firstly, in order to cut down the computational complexity, Principal Component Analysis is used to reduce the dimension of node sample data. Secondly, a convolution neural network containing two hidden layers is designed to extract local features of the preprocessed data. Stochastic gradient descent method is used to optimize the parameters, and the Softmax Model is used to determine the output label. Finally, the effectiveness of the method is verified by experiments on practical wireless ad-hoc network.