Visible to the public Biblio

Filters: Author is Zhou, Wei  [Clear All Filters]
2022-08-03
Gao, Xiaotong, Ma, Yanfang, Zhou, Wei.  2021.  The Trustworthiness Measurement Model of Component-based Software Based on the Subjective and Objective Weight Allocation Method. 2021 IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C). :478—486.
Software trustworthiness includes many attributes. Reasonable weight allocation of trustworthy attributes plays a key role in the software trustworthiness measurement. In practical application, attribute weight usually comes from experts' evaluation to attributes and hidden information derived from attributes. Therefore, when the weight of attributes is researched, it is necessary to consider weight from subjective and objective aspects. Firstly, a novel weight allocation method is proposed by combining the Fuzzy Analytical Hierarchy Process (FAHP) method and the Criteria Importance Though Intercrieria Correlation (CRITIC) method. Secondly, based on the weight allocation method, the trustworthiness measurement models of component-based software are established according to the four combination structures of components. Thirdly, some metric criteria of the model are proved to verify the reasonability. Finally, a case is used to illustrate the practicality of the model.
2020-07-30
Yang, Fan, Shi, Yue, Wu, Qingqing, Li, Fei, Zhou, Wei, Hu, Zhiyan, Xiong, Naixue, Zhang, Yong.  2019.  The Survey on Intellectual Property Based on Blockchain Technology. 2019 IEEE International Conference on Industrial Cyber Physical Systems (ICPS). :743—748.
The characteristics of decentralization, tamper-resistance and transaction anonymity of blockchain can resolve effectively the problems in traditional intellectual property such as the difficulty of electronic obtaining for evidence, the high cost and low compensation when safeguarding the copyrights. Blockchain records the information through encryption algorithm, removes the third party, and stores the information in all nodes to prevent the information from being tampered with, so as to realize the protection of intellectual property. Starting from the bottom layer of blockchain, this paper expounds in detail the characteristics and the technical framework of blockchain. At the same time, according to the existing problems in transaction throughput, time delay and resource consumption of blockchain system, optimization mechanisms such as cross-chain and proof of stake are analyzed. Finally, combined with the characteristics of blockchain technology and existing application framework, this paper summarizes the existing problems in the industry and forecasts the development trend of intellectual property based on blockchain technology.
2020-06-02
Zhou, Wei, Wang, Jin, Li, Lingzhi, Wang, Jianping, Lu, Kejie, Zhou, Xiaobo.  2019.  An Efficient Secure Coded Edge Computing Scheme Using Orthogonal Vector. 2019 IEEE Intl Conf on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom). :100—107.

In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities. In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities.

2020-05-18
Zhou, Wei, Yang, Weidong, Wang, Yan, Zhang, Hong.  2018.  Generalized Reconstruction-Based Contribution for Multiple Faults Diagnosis with Bayesian Decision. 2018 IEEE 7th Data Driven Control and Learning Systems Conference (DDCLS). :813–818.
In fault diagnosis of industrial process, there are usually more than one variable that are faulty. When multiple faults occur, the generalized reconstruction-based contribution can be helpful while traditional RBC may make mistakes. Due to the correlation between the variables, these faults usually propagate to other normal variables, which is called smearing effect. Thus, it is helpful to consider the pervious fault diagnosis results. In this paper, a data-driven fault diagnosis method which is based on generalized RBC and bayesian decision is presented. This method combines multi-dimensional RBC and bayesian decision. The proposed method improves the diagnosis capability of multiple and minor faults with greater noise. A numerical simulation example is given to show the effectiveness and superiority of the proposed method.