Visible to the public Biblio

Filters: Keyword is chaotic cryptosystem  [Clear All Filters]
2021-01-22
Bouteghrine, B., Rabiai, M., Tanougast, C., Sadoudi, S..  2019.  FPGA Implementation of Internet Key Exchange Based on Chaotic Cryptosystem. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:384–387.

In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.

2020-09-08
Bouteghrine, Belqassim, Rabiai, Mohammed, Tanougast, Camel, Sadoudi, Said.  2019.  FPGA Implementation of Internet Key Exchange Based on Chaotic Cryptosystem. 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS). 1:384–387.
In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.
2017-12-27
Pich, R., Chivapreecha, S., Prabnasak, J..  2017.  A new key generator for data encryption using chaos in digital filter. 2017 IEEE 8th Control and System Graduate Research Colloquium (ICSGRC). :87–92.

The presented work of this paper is to propose the implementation of chaotic crypto-system with the new key generator using chaos in digital filter for data encryption and decryption. The chaos in digital filter of the second order system is produced by the coefficients which are initialed in the key generator to produce other new coefficients. Private key system using the initial coefficients value condition and dynamic input as password of 16 characters is to generate the coefficients for crypto-system. In addition, we have tension specifically to propose the solution of data security in lightweight cryptography based on external and internal key in which conducts with the appropriate key sensitivity plus high performance. The chaos in digital filter has functioned as the main major in the system. The experimental results illustrate that the proposed data encryption with new key generator system is the high sensitive system with accuracy key test 99% and can make data more secure with high performance.