Biblio
The recent malware outbreaks have shown that the existing end-point security solutions are not robust enough to secure the systems from getting compromised. The techniques, like code obfuscation along with one or more zero-days, are used by malware developers for evading the security systems. These malwares are used for large-scale attacks involving Advanced Persistent Threats(APT), Botnets, Cryptojacking, etc. Cryptojacking poses a severe threat to various organizations and individuals. We are summarising multiple methods available for the detection of malware.
Botnet has been evolving over time since its birth. Nowadays, P2P (Peer-to-Peer) botnet has become a main threat to cyberspace security, owing to its strong concealment and easy expansibility. In order to effectively detect P2P botnet, researchers often focus on the analysis of network traffic. For the sake of enriching P2P botnet detection methods, the author puts forward a new sight of applying distributed threat intelligence sharing system to P2P botnet detection. This system aims to fight against distributed botnet by using distributed methods itself, and then to detect botnet in real time. To fulfill the goal of botnet detection, there are 3 important parts: the threat intelligence sharing and evaluating system, the BAV quantitative TI model, and the AHP and HMM based analysis algorithm. Theoretically, this method should work on different types of distributed cyber threat besides P2P botnet.
This paper presents an experimental analysis of current Distributed Denial of Service attacks. Our analysis is based on real data collected by a honeynet system that was installed on an ISP edge router, for a four-month period. In the examined scenario, we identify and analyze malicious activities based on packets captured and analyzed by a network protocol sniffer and signature-based attack analysis tools. Our analysis shows that IoT-based DDoS attacks are one of the latest and most proliferating attack trends in network security. Based on the analysis of the attacks, we describe some mitigation techniques that can be applied at the providers' network to mitigate the trending attack vectors.
Distributed Denial of Service (DDoS) attacks have two defense perspectives firstly, to defend your network, resources and other information assets from this disastrous attack. Secondly, to prevent your network to be the part of botnet (botforce) bondage to launch attacks on other networks and resources mainly be controlled from a control center. This work focuses on the development of a botnet prevention system for Internet of Things (IoT) that uses the benefits of both Software Defined Networking (SDN) and Distributed Blockchain (DBC). We simulate and analyze that using blockchain and SDN, how can detect and mitigate botnets and prevent our devices to play into the hands of attackers.
The Internet of Things (IoT) vulnerabilities provides an ideal target for botnets, making them a major contributor in the increased number of Distributed Denial of Service (DDoS) attacks. The increase in DDoS attacks has made it important to address the consequences it implies on the IoT industry being one of the major causes. The aim of this paper is to provide an analysis of the attempts to prevent DDoS attacks, mainly at a network level. The sensibility of these solutions is extracted from their impact in resolving IoT vulnerabilities. It is evident from this review that there is no perfect solution yet for IoT security, this field still has many opportunities for research and development.
Smartphones have evolved over the years from simple devices to communicate with each other to fully functional portable computers although with comparatively less computational power but inholding multiple applications within. With the smartphone revolution, the value of personal data has increased. As technological complexities increase, so do the vulnerabilities in the system. Smartphones are the latest target for attacks. Android being an open source platform and also the most widely used smartphone OS draws the attention of many malware writers to exploit the vulnerabilities of it. Attackers try to take advantage of these vulnerabilities and fool the user and misuse their data. Malwares have come a long way from simple worms to sophisticated DDOS using Botnets, the latest trends in computer malware tend to go in the distributed direction, to evade the multiple anti-virus apps developed to counter generic viruses and Trojans. However, the recent trend in android system is to have a combination of applications which acts as malware. The applications are benign individually but when grouped, these may result into a malicious activity. This paper proposes a new category of distributed malware in android system, how it can be used to evade the current security, and how it can be detected with the help of graph matching algorithm.
The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.
Botnet on a mobile platform is one of the severe problems for the Internet security. It causes damages to both individual users and the economic system. Botnet detection is required to stop these damages. However, botmasters keep developing their botnets. Peer-to-peer (P2P) connection and encryption are used in the botnet communication to avoid the exposure and takedown. To tackle this problem, we propose the P2P mobile botnet detection by using communication patterns. A graph representation called "graphlet" is used to capture the natural communication patterns of a P2P mobile botnet. The graphlet-based detection does not violate the user privacy, and also effective with encrypted traffic. Furthermore, a machine learning technique with graphlet-based features can detect the P2P mobile botnet even it runs simultaneously with other applications such as Facebook, Line, Skype, YouTube, and Web. Moreover, we employ the Principal Components Analysis (PCA) to analyze graphlet's features to leverage the detection performance when the botnet coexists with dense traffic such as Web traffic. Our work focuses on the real traffic of an advanced P2P mobile botnet named "NotCompatible.C". The detection performance shows high F-measure scores of 0.93, even when sampling only 10% of traffic in a 3-minute duration.
Today's malware often relies on DNS to enable communication with command-and-control (C&C). As defenses that block C&C traffic improve, malware use sophisticated techniques to hide this traffic, including "fast flux" names and Domain-Generation Algorithms (DGAs). Detecting this kind of activity requires analysis of DNS queries in network traffic, yet these signals are sparse. As bot countermeasures grow in sophistication, detecting these signals increasingly requires the synthesis of information from multiple sites. Yet sharing security information across organizational boundaries to date has been infrequent and ad hoc because of unknown risks and uncertain benefits. In this paper, we take steps towards formalizing cross-site information sharing and quantifying the benefits of data sharing. We use a case study on DGA-based botnet detection to evaluate how sharing cybersecurity data can improve detection sensitivity and allow the discovery of malicious activity with greater precision.
A beneficial botnet, which tries to cope with technology of malicious botnets such as peer to peer (P2P) networking and Domain Generation Algorithm (DGA), is discussed. In order to cope with such botnets' technology, we are developing a beneficial botnet as an anti-bot measure, using our previous beneficial bot. The beneficial botnet is a group of beneficial bots. The peer to peer (P2P) communication of malicious botnet is hard to detect by a single Intrusion Detection System (IDS). Our beneficial botnet has the ability to detect P2P communication, using collaboration of our beneficial bots. The beneficial bot could detect communication of the pseudo botnet which mimics malicious botnet communication. Our beneficial botnet may also detect communication using DGA. Furthermore, our beneficial botnet has ability to cope with new technology of new botnets, because our beneficial botnet has the ability to evolve, as same as malicious botnets.
Botnets represent a widely deployed framework for remotely infecting and controlling hundreds of networked computing devices for malicious ends. Traditionally detection of Botnets from network data using machine learning approaches is framed as an offline, supervised learning activity. However, in practice both normal behaviours and Botnet behaviours represent non-stationary processes in which there are continuous developments to both as new services/applications and malicious behaviours appear. This work formulates the task of Botnet detection as a streaming data task in which finite label budgets, class imbalance and incremental/online learning predominate. We demonstrate that effective Botnet detection is possible for label budgets as low as 0.5% when an active learning approach is adopted for genetic programming (GP) streaming data analysis. The full article appears as S. Khanchi et al., (2018) "On Botnet Detection with Genetic Programming under Streaming Data, Label Budgets and Class Imbalance" in Swarm and Evolutionary Computation, 39:139--140. https://doi.org/10.1016/j.swevo.2017.09.008
An important source of cyber-attacks is malware, which proliferates in different forms such as botnets. The botnet malware typically looks for vulnerable devices across the Internet, rather than targeting specific individuals, companies or industries. It attempts to infect as many connected devices as possible, using their resources for automated tasks that may cause significant economic and social harm while being hidden to the user and device. Thus, it becomes very difficult to detect such activity. A considerable amount of research has been conducted to detect and prevent botnet infestation. In this paper, we attempt to create a foundation for an anomaly-based intrusion detection system using a statistical learning method to improve network security and reduce human involvement in botnet detection. We focus on identifying the best features to detect botnet activity within network traffic using a lightweight logistic regression model. The network traffic is processed by Bro, a popular network monitoring framework which provides aggregate statistics about the packets exchanged between a source and destination over a certain time interval. These statistics serve as features to a logistic regression model responsible for classifying malicious and benign traffic. Our model is easy to implement and simple to interpret. We characterized and modeled 8 different botnet families separately and as a mixed dataset. Finally, we measured the performance of our model on multiple parameters using F1 score, accuracy and Area Under Curve (AUC).
The paper presents a new technique for the botnets' detection in the corporate area networks. It is based on the usage of the algorithms of the artificial immune systems. Proposed approach is able to distinguish benign network traffic from malicious one using the clonal selection algorithm taking into account the features of the botnet's presence in the network. An approach present the main improvements of the BotGRABBER system. It is able to detect the IRC, HTTP, DNS and P2P botnets.
With the rapid development of the information industry, the applications of Internet of things, cloud computing and artificial intelligence have greatly affected people's life, and the network equipment has increased with a blowout type. At the same time, more complex network environment has also led to a more serious network security problem. The traditional security solution becomes inefficient in the new situation. Therefore, it is an important task for the security industry to seek technical progress and improve the protection detection and protection ability of the security industry. Botnets have been one of the most important issues in many network security problems, especially in the last one or two years, and China has become one of the most endangered countries by botnets, thus the huge impact of botnets in the world has caused its detection problems to reset people's attention. This paper, based on the topic of botnet detection, focuses on the latest research achievements of botnet detection based on machine learning technology. Firstly, it expounds the application process of machine learning technology in the research of network space security, introduces the structure characteristics of botnet, and then introduces the machine learning in botnet detection. The security features of these solutions and the commonly used machine learning algorithms are emphatically analyzed and summarized. Finally, it summarizes the existing problems in the existing solutions, and the future development direction and challenges of machine learning technology in the research of network space security.
The IRC botnet is the earliest and most significant botnet group that has a significant impact. Its characteristic is to control multiple zombies hosts through the IRC protocol and constructing command control channels. Relevant research analyzes the large amount of network traffic generated by command interaction between the botnet client and the C&C server. Packet capture traffic monitoring on the network is currently a more effective detection method, but this information does not reflect the essential characteristics of the IRC botnet. The increase in the amount of erroneous judgments has often occurred. To identify whether the botnet control server is a homogenous botnet, dynamic network communication characteristic curves are extracted. For unequal time series, dynamic time warping distance clustering is used to identify the homologous botnets by category, and in order to improve detection. Speed, experiments will use SAX to reduce the dimension of the extracted curve, reducing the time cost without reducing the accuracy.
Botnet is one of the major threats on the Internet for committing cybercrimes, such as DDoS attacks, stealing sensitive information, spreading spams, etc. It is a challenging issue to detect modern botnets that are continuously improving for evading detection. In this paper, we propose a machine learning based botnet detection system that is shown to be effective in identifying P2P botnets. Our approach extracts convolutional version of effective flow-based features, and trains a classification model by using a feed-forward artificial neural network. The experimental results show that the accuracy of detection using the convolutional features is better than the ones using the traditional features. It can achieve 94.7% of detection accuracy and 2.2% of false positive rate on the known P2P botnet datasets. Furthermore, our system provides an additional confidence testing for enhancing performance of botnet detection. It further classifies the network traffic of insufficient confidence in the neural network. The experiment shows that this stage can increase the detection accuracy up to 98.6% and decrease the false positive rate up to 0.5%.
Compromising IoT devices to build botnets and disrupt critical infrastructure is an existential threat. Refrigerators, washing machines, DVRs, security cameras, and other consumer goods are high value targets for attackers due to inherent security weaknesses, a lack of consumer security awareness, and an absence of market forces or regulatory requirements to motivate IoT security. As a result of the deficiencies, attackers have quickly assembled large scale botnets of IoT devices to disable Internet infrastructure and deny access to dominant web properties with near impunity. IoT malware is often transmitted from host to host similar to how biological viruses spread in populations. Both biological viruses and computer malware may exhibit epidemic characteristics when spreading in populations of vulnerable hosts. Vaccines are used to stimulate resistance to biological viruses by inoculating a sufficient number of hosts in the vulnerable population to limit the spread of the biological virus and prevent epidemics. Inoculation programs may be viewed as a human instigated epidemic that spreads a vaccine in order to mitigate the damage from a biological virus. In this paper we propose a technique to create an inoculation epidemic for IoT devices using a novel variation of a SIS epidemic model and show experimental results that indicate utility of the approach.
Modern botnets can persist in networked systems for extended periods of time by operating in a stealthy manner. Despite the progress made in the area of botnet prevention, detection, and mitigation, stealthy botnets continue to pose a significant risk to enterprises. Furthermore, existing enterprise-scale solutions require significant resources to operate effectively, thus they are not practical. In order to address this important problem in a resource-constrained environment, we propose a reinforcement learning based approach to optimally and dynamically deploy a limited number of defensive mechanisms, namely honeypots and network-based detectors, within the target network. The ultimate goal of the proposed approach is to reduce the lifetime of stealthy botnets by maximizing the number of bots identified and taken down through a sequential decision-making process. We provide a proof-of-concept of the proposed approach, and study its performance in a simulated environment. The results show that the proposed approach is promising in protecting against stealthy botnets.
Botnet malware, which infects Internet-connected devices and seizes control for a remote botmaster, is a long-standing threat to Internet-connected users and systems. Botnets are used to conduct DDoS attacks, distributed computing (e.g., mining bitcoins), spread electronic spam and malware, conduct cyberwarfare, conduct click-fraud scams, and steal personal user information. Current approaches to the detection and classification of botnet malware include syntactic, or signature-based, and semantic, or context-based, detection techniques. Both methods have shortcomings and botnets remain a persistent threat. In this paper, we propose a method of botnet detection using Nonparametric Bayesian Methods.
Remote Access Trojans (RATs) give remote attackers interactive control over a compromised machine. Unlike large-scale malware such as botnets, a RAT is controlled individually by a human operator interacting with the compromised machine remotely. The versatility of RATs makes them attractive to actors of all levels of sophistication: they've been used for espionage, information theft, voyeurism and extortion. Despite their increasing use, there are still major gaps in our understanding of RATs and their operators, including motives, intentions, procedures, and weak points where defenses might be most effective. In this work we study the use of DarkComet, a popular commercial RAT. We collected 19,109 samples of DarkComet malware found in the wild, and in the course of two, several-week-long experiments, ran as many samples as possible in our honeypot environment. By monitoring a sample's behavior in our system, we are able to reconstruct the sequence of operator actions, giving us a unique view into operator behavior. We report on the results of 2,747 interactive sessions captured in the course of the experiment. During these sessions operators frequently attempted to interact with victims via remote desktop, to capture video, audio, and keystrokes, and to exfiltrate files and credentials. To our knowledge, we are the first large-scale systematic study of RAT use.
The Internet of Things (IoT) revolution promises to make our lives easier by providing cheap and always connected smart embedded devices, which can interact on the Internet and create added values for human needs. But all that glitters is not gold. Indeed, the other side of the coin is that, from a security perspective, this IoT revolution represents a potential disaster. This plethora of IoT devices that flooded the market were very badly protected, thus an easy prey for several families of malwares that can enslave and incorporate them in very large botnets. This, eventually, brought back to the top Distributed Denial of Service (DDoS) attacks, making them more powerful and easier to achieve than ever. This paper aims at provide an up-to-date picture of DDoS attacks in the specific subject of the IoT, studying how these attacks work and considering the most common families in the IoT context, in terms of their nature and evolution through the years. It also explores the additional offensive capabilities that this arsenal of IoT malwares has available, to mine the security of Internet users and systems. We think that this up-to-date picture will be a valuable reference to the scientific community in order to take a first crucial step to tackle this urgent security issue.
Recently, the increase of interconnectivity has led to a rising amount of IoT enabled devices in botnets. Such botnets are currently used for large scale DDoS attacks. To keep track with these malicious activities, Honeypots have proven to be a vital tool. We developed and set up a distributed and highly-scalable WAN Honeypot with an attached backend infrastructure for sophisticated processing of the gathered data. For the processed data to be understandable we designed a graphical frontend that displays all relevant information that has been obtained from the data. We group attacks originating in a short period of time in one source as sessions. This enriches the data and enables a more in-depth analysis. We produced common statistics like usernames, passwords, username/password combinations, password lengths, originating country and more. From the information gathered, we were able to identify common dictionaries used for brute-force login attacks and other more sophisticated statistics like login attempts per session and attack efficiency.
Building the Internet of Things requires deploying a huge number of objects with full or limited connectivity to the Internet. Given that these objects are exposed to attackers and generally not secured-by-design, it is essential to be able to update them, to patch their vulnerabilities and to prevent hackers from enrolling them into botnets. Ideally, the update infrastructure should implement the CIA triad properties, i.e., confidentiality, integrity and availability. In this work, we investigate how the use of a blockchain infrastructure can meet these requirements, with a focus on availability. In addition, we propose a peer-to-peer mechanism, to spread updates between objects that have limited access to the Internet. Finally, we give an overview of our ongoing prototype implementation.
Botnets have long been used for malicious purposes with huge economic costs to the society. With the proliferation of cheap but non-secure Internet-of-Things (IoT) devices generating large amounts of data, the potential for damage from botnets has increased manifold. There are several approaches to detect bots or botnets, though many traditional techniques are becoming less effective as botnets with centralized command & control structure are being replaced by peer-to-peer (P2P) botnets which are harder to detect. Several algorithms have been proposed in literature that use graph analysis or machine learning techniques to detect the overlay structure of P2P networks in communication graphs. Many of these algorithms however, depend on the availability of a universal communication graph or a communication graph aggregated from several ISPs, which is not likely to be available in reality. In real world deployments, significant gaps in communication graphs are expected and any solution proposed should be able to work with partial information. In this paper, we analyze the effectiveness of some community detection algorithms in detecting P2P botnets, especially with partial information. We show that the approach can work with only about half of the nodes reporting their communication graphs, with only small increase in detection errors.