Visible to the public Biblio

Filters: Keyword is botnets  [Clear All Filters]
2017-12-04
Alejandre, F. V., Cortés, N. C., Anaya, E. A..  2017.  Feature selection to detect botnets using machine learning algorithms. 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP). :1–7.

In this paper, a novel method to do feature selection to detect botnets at their phase of Command and Control (C&C) is presented. A major problem is that researchers have proposed features based on their expertise, but there is no a method to evaluate these features since some of these features could get a lower detection rate than other. To this aim, we find the feature set based on connections of botnets at their phase of C&C, that maximizes the detection rate of these botnets. A Genetic Algorithm (GA) was used to select the set of features that gives the highest detection rate. We used the machine learning algorithm C4.5, this algorithm did the classification between connections belonging or not to a botnet. The datasets used in this paper were extracted from the repositories ISOT and ISCX. Some tests were done to get the best parameters in a GA and the algorithm C4.5. We also performed experiments in order to obtain the best set of features for each botnet analyzed (specific), and for each type of botnet (general) too. The results are shown at the end of the paper, in which a considerable reduction of features and a higher detection rate than the related work presented were obtained.

Gardner, M. T., Beard, C., Medhi, D..  2017.  Using SEIRS Epidemic Models for IoT Botnets Attacks. DRCN 2017 - Design of Reliable Communication Networks; 13th International Conference. :1–8.

The spread of Internet of Things (IoT) botnets like those utilizing the Mirai malware were successful enough to power some of the most powerful DDoS attacks that have been seen thus far on the Internet. Two such attacks occurred on October 21, 2016 and September 20, 2016. Since there are an estimated three billion IoT devices currently connected to the Internet, these attacks highlight the need to understand the spread of IoT worms like Mirai and the vulnerability that they create for the Internet. In this work, we describe the spread of IoT worms using a proposed model known as the IoT Botnet with Attack Information (IoT-BAI), which utilizes a variation of the Susceptible-Exposed-Infected-Recovered-Susceptible (SEIRS) epidemic model [14]. The IoT-BAI model has shown that it may be possible to mitigate the frequency of IoT botnet attacks with improved user information which may positively affect user behavior. Additionally, the IoT-BAI model has shown that increased vulnerability to attack can be caused by new hosts entering the IoT population on a daily basis. Models like IoT-BAI could be used to predict user behavior after significant events in the network like a significant botnet attack.

Hongyo, K., Kimura, T., Kudo, T., Inoue, Y., Hirata, K..  2017.  Modeling of countermeasure against self-evolving botnets. 2017 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW). :227–228.

Machine learning has been widely used and achieved considerable results in various research areas. On the other hand, machine learning becomes a big threat when malicious attackers make use it for the wrong purpose. As such a threat, self-evolving botnets have been considered in the past. The self-evolving botnets autonomously predict vulnerabilities by implementing machine learning with computing resources of zombie computers. Furthermore, they evolve based on the vulnerability, and thus have high infectivity. In this paper, we consider several models of Markov chains to counter the spreading of the self-evolving botnets. Through simulation experiments, this paper shows the behaviors of these models.

Costa, V. G. T. da, Barbon, S., Miani, R. S., Rodrigues, J. J. P. C., Zarpelão, B. B..  2017.  Detecting mobile botnets through machine learning and system calls analysis. 2017 IEEE International Conference on Communications (ICC). :1–6.

Botnets have been a serious threat to the Internet security. With the constant sophistication and the resilience of them, a new trend has emerged, shifting botnets from the traditional desktop to the mobile environment. As in the desktop domain, detecting mobile botnets is essential to minimize the threat that they impose. Along the diverse set of strategies applied to detect these botnets, the ones that show the best and most generalized results involve discovering patterns in their anomalous behavior. In the mobile botnet field, one way to detect these patterns is by analyzing the operation parameters of this kind of applications. In this paper, we present an anomaly-based and host-based approach to detect mobile botnets. The proposed approach uses machine learning algorithms to identify anomalous behaviors in statistical features extracted from system calls. Using a self-generated dataset containing 13 families of mobile botnets and legitimate applications, we were able to test the performance of our approach in a close-to-reality scenario. The proposed approach achieved great results, including low false positive rates and high true detection rates.

Zhuang, D., Chang, J. M..  2017.  PeerHunter: Detecting peer-to-peer botnets through community behavior analysis. 2017 IEEE Conference on Dependable and Secure Computing. :493–500.

Peer-to-peer (P2P) botnets have become one of the major threats in network security for serving as the infrastructure that responsible for various of cyber-crimes. Though a few existing work claimed to detect traditional botnets effectively, the problem of detecting P2P botnets involves more challenges. In this paper, we present PeerHunter, a community behavior analysis based method, which is capable of detecting botnets that communicate via a P2P structure. PeerHunter starts from a P2P hosts detection component. Then, it uses mutual contacts as the main feature to cluster bots into communities. Finally, it uses community behavior analysis to detect potential botnet communities and further identify bot candidates. Through extensive experiments with real and simulated network traces, PeerHunter can achieve very high detection rate and low false positives.

2017-11-20
Mallikarjunan, K. N., Muthupriya, K., Shalinie, S. M..  2016.  A survey of distributed denial of service attack. 2016 10th International Conference on Intelligent Systems and Control (ISCO). :1–6.

Information security deals with a large number of subjects like spoofed message detection, audio processing, video surveillance and cyber-attack detections. However the biggest threat for the homeland security is cyber-attacks. Distributed Denial of Service attack is one among them. Interconnected systems such as database server, web server, cloud computing servers etc., are now under threads from network attackers. Denial of service is common attack in the internet which causes problem for both the user and the service providers. Distributed attack sources can be used to enlarge the attack in case of Distributed Denial of Service so that the effect of the attack will be high. Distributed Denial of Service attacks aims at exhausting the communication and computational power of the network by flooding the packets through the network and making malicious traffic in the network. In order to be an effective service the DDoS attack must be detected and mitigated quickly before the legitimate user access the attacker's target. The group of systems that is used to perform the DoS attack is known as the botnets. This paper introduces the overview of the state of art in DDoS attack detection strategies.

2017-10-03
Sahri, Nm, Okamura, Koji.  2016.  Protecting DNS Services from IP Spoofing: SDN Collaborative Authentication Approach. Proceedings of the 11th International Conference on Future Internet Technologies. :83–89.

As DNS packet are mostly UDP-based, make it as a perfect tool for hackers to launch a well-known type of distributed denial of service (DDoS). The purpose of this attack is to saturate the DNS server availability and resources. This type of attack usually utilizes a large number of botnet and perform spoofing on the IP address of the targeted victim. We take a different approach for IP spoofing detection and mitigation strategies to protect the DNS server by utilizing Software Defined Networking (SDN). In this paper, we present CAuth, a novel mechanism that autonomously block the spoofing query packet while authenticate the legitimate query. By manipulating Openflow control message, we design a collaborative approach between client and server network. Whenever a server controller receives query packet, it will send an authentication packet back to the client network and later the client controller also replies via authentication packet back to the server controller. The server controller will only forward the query to the DNS server if it receives the replied authentication packet from the client. From the evaluation, CAuth instantly manage to block spoofing query packet while authenticate the legitimate query as soon as the mechanism started. Most notably, our mechanism designed with no changes in existing DNS application and Openflow protocol.

Sekar, Vyas.  2016.  Enabling Software-Defined Network Security for Next-Generation Networks. Proceedings of the 12th International on Conference on Emerging Networking EXperiments and Technologies. :1–1.

The state of network security today is quite abysmal. Security breaches and downtime of critical infrastructures continue to be the norm rather than the exception, despite the dramatic rise in spending on network security. Attackers today can easily leverage a distributed and programmable infrastructure of compromised machines (or botnets) to launch large-scale and sophisticated attack campaigns. In contrast, the defenders of our critical infrastructures are fundamentally crippled as they rely on fixed capacity, inflexible, and expensive hardware appliances deployed at designated "chokepoints". These primitive defense capabilities force defenders into adopting weak and static security postures configured for simple and known attacks, or otherwise risk user revolt, as they face unpleasant tradeoffs between false positives and false negatives. Unfortunately, attacks can easily evade these defenses; e.g., piggybacking on popular services (e.g., drive-by-downloads) and by overloading the appliances. Continuing along this trajectory means that attackers will always hold the upper hand as defenders are stifled by the inflexible and impotent tools in their arsenal. An overarching goal of my work is to change the dynamics of this attack-defense equation. Instead of taking a conventional approach of developing attack-specific defenses, I argue that we can leverage recent trends in software-defined networking and network functions virtualization to better empower defenders with the right tools and abstractions to tackle the constantly evolving attack landscape. To this end, I envision a new software-defined approach to network security, where we can rapidly develop and deploy novel in-depth defenses and dynamically customize the network's security posture to the current operating context. In this talk, I will give an overview of our recent work on the basic building blocks to enable this vision as well as some early security capabilities we have developed. Using anecdotes from this specific exercise, I will also try to highlight lessons and experiences in the overall research process (e.g., how to pick and formulate problems, the role of serendipity, and the benefits of finding ``bridges'' to other subdomains).

Tran, Manh Cong, Nakamura, Yasuhiro.  2016.  Web Access Behaviour Model for Filtering Out HTTP Automated Software Accessed Domain. Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication. :67:1–67:4.

In many decades, due to fast growth of the World Wide Web, HTTP automated software/applications (auto-ware) are blooming for multiple purposes. Unfortunately, beside normal applications such as virus defining or operating system updating, auto-ware can also act as abnormal processes such as botnet, worms, virus, spywares, and advertising software (adware). Therefore, auto-ware, in a sense, consumes network bandwidth, and it might become internal security threats, auto-ware accessed domain/server also might be malicious one. Understanding about behaviour of HTTP auto-ware is beneficial for anomaly/malicious detection, the network management, traffic engineering and security. In this paper, HTTP auto-ware communication behaviour is analysed and modeled, from which a method in filtering out its domain/server is proposed. The filtered results can be used as a good resource for other security action purposes such as malicious domain/URL detection/filtering or investigation of HTTP malware from internal threats.

Lu, Yiqin, Wang, Meng.  2016.  An Easy Defense Mechanism Against Botnet-based DDoS Flooding Attack Originated in SDN Environment Using sFlow. Proceedings of the 11th International Conference on Future Internet Technologies. :14–20.

As today's networks become larger and more complex, the Distributed Denial of Service (DDoS) flooding attack threats may not only come from the outside of networks but also from inside, such as cloud computing network where exists multiple tenants possibly containing malicious tenants. So, the need of source-based defense mechanism against such attacks is pressing. In this paper, we mainly focus on the source-based defense mechanism against Botnet-based DDoS flooding attack through combining the power of Software-Defined Networking (SDN) and sample flow (sFlow) technology. Firstly, we defined a metric to measure the essential features of this kind attack which means distribution and collaboration. Then we designed a simple detection algorithm based on statistical inference model and response scheme through the abilities of SDN. Finally, we developed an application to realize our idea and also tested its effect on emulation network with real network traffic. The result shows that our mechanism could effectively detect DDoS flooding attack originated in SDN environment and identify attack flows for avoiding the harm of attack spreading to target or outside. We advocate the advantages of SDN in the area of defending DDoS attacks, because it is difficult and laborious to organize selfish and undisciplined traditional distributed network to confront well collaborative DDoS flooding attacks.

Venkatesan, Sridhar, Albanese, Massimiliano, Cybenko, George, Jajodia, Sushil.  2016.  A Moving Target Defense Approach to Disrupting Stealthy Botnets. Proceeding MTD '16 Proceedings of the 2016 ACM Workshop on Moving Target Defense Pages 37-46 .

Botnets are increasingly being used for exfiltrating sensitive data from mission-critical systems. Research has shown that botnets have become extremely sophisticated and can operate in stealth mode by minimizing their host and network footprint. In order to defeat exfiltration by modern botnets, we propose a moving target defense approach for dynamically deploying detectors across a network. Specifically, we propose several strategies based on centrality measures to periodically change the placement of detectors. Our objective is to increase the attacker's effort and likelihood of detection by creating uncertainty about the location of detectors and forcing botmasters to perform additional actions in an attempt to create detector-free paths through the network. We present metrics to evaluate the proposed strategies and an algorithm to compute a lower bound on the detection probability. We validate our approach through simulations, and results confirm that the proposed solution effectively reduces the likelihood of successful exfiltration campaigns.

Bottazzi, Giovanni, Italiano, Giuseppe F., Rutigliano, Giuseppe G..  2016.  Frequency Domain Analysis of Large-Scale Proxy Logs for Botnet Traffic Detection. Proceedings of the 9th International Conference on Security of Information and Networks. :76–80.

Botnets have become one of the most significant cyber threats over the last decade. The diffusion of the "Internet of Things" and its for-profit exploitation, contributed to botnets spread and sophistication, thus providing real, efficient and profitable criminal cyber-services. Recent research on botnet detection focuses on traffic pattern-based detection, and on analyzing the network traffic generated by the infected hosts, in order to find behavioral patterns independent from the specific payloads, architectures and protocols. In this paper we address the periodic behavioral patterns of infected hosts communicating with their Command-and-Control servers. The main novelty introduced is related to the traffic analysis in the frequency domain without using the well-known Fast Fourier Transform. Moreover, the mentioned analysis is performed through the exploitation of the proxy logs, easily deployable on almost every real-world scenario, from enterprise networks to mobile devices.

2017-09-19
Tong, Van, Nguyen, Giang.  2016.  A Method for Detecting DGA Botnet Based on Semantic and Cluster Analysis. Proceedings of the Seventh Symposium on Information and Communication Technology. :272–277.

Botnets play major roles in a vast number of threats to network security, such as DDoS attacks, generation of spam emails, information theft. Detecting Botnets is a difficult task in due to the complexity and performance issues when analyzing the huge amount of data from real large-scale networks. In major Botnet malware, the use of Domain Generation Algorithms allows to decrease possibility to be detected using white list - blacklist scheme and thus DGA Botnets have higher survival. This paper proposes a DGA Botnet detection scheme based on DNS traffic analysis which utilizes semantic measures such as entropy, meaning the level of the domain, frequency of n-gram appearances and Mahalanobis distance for domain classification. The proposed method is an improvement of Phoenix botnet detection mechanism, where in the classification phase, the modified Mahalanobis distance is used instead of the original for classification. The clustering phase is based on modified k-means algorithm for archiving better effectiveness. The effectiveness of the proposed method was measured and compared with Phoenix, Linguistic and SVM Light methods. The experimental results show the accuracy of proposed Botnet detection scheme ranges from 90 to 99,97% depending on Botnet type.

2017-09-15
Liao, Xiaojing, Yuan, Kan, Wang, XiaoFeng, Li, Zhou, Xing, Luyi, Beyah, Raheem.  2016.  Acing the IOC Game: Toward Automatic Discovery and Analysis of Open-Source Cyber Threat Intelligence. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. :755–766.

To adapt to the rapidly evolving landscape of cyber threats, security professionals are actively exchanging Indicators of Compromise (IOC) (e.g., malware signatures, botnet IPs) through public sources (e.g. blogs, forums, tweets, etc.). Such information, often presented in articles, posts, white papers etc., can be converted into a machine-readable OpenIOC format for automatic analysis and quick deployment to various security mechanisms like an intrusion detection system. With hundreds of thousands of sources in the wild, the IOC data are produced at a high volume and velocity today, which becomes increasingly hard to manage by humans. Efforts to automatically gather such information from unstructured text, however, is impeded by the limitations of today's Natural Language Processing (NLP) techniques, which cannot meet the high standard (in terms of accuracy and coverage) expected from the IOCs that could serve as direct input to a defense system. In this paper, we present iACE, an innovation solution for fully automated IOC extraction. Our approach is based upon the observation that the IOCs in technical articles are often described in a predictable way: being connected to a set of context terms (e.g., "download") through stable grammatical relations. Leveraging this observation, iACE is designed to automatically locate a putative IOC token (e.g., a zip file) and its context (e.g., "malware", "download") within the sentences in a technical article, and further analyze their relations through a novel application of graph mining techniques. Once the grammatical connection between the tokens is found to be in line with the way that the IOC is commonly presented, these tokens are extracted to generate an OpenIOC item that describes not only the indicator (e.g., a malicious zip file) but also its context (e.g., download from an external source). Running on 71,000 articles collected from 45 leading technical blogs, this new approach demonstrates a remarkable performance: it generated 900K OpenIOC items with a precision of 95% and a coverage over 90%, which is way beyond what the state-of-the-art NLP technique and industry IOC tool can achieve, at a speed of thousands of articles per hour. Further, by correlating the IOCs mined from the articles published over a 13-year span, our study sheds new light on the links across hundreds of seemingly unrelated attack instances, particularly their shared infrastructure resources, as well as the impacts of such open-source threat intelligence on security protection and evolution of attack strategies.

2017-09-05
Thakar, Bhavik, Parekh, Chandresh.  2016.  Advance Persistent Threat: Botnet. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :143:1–143:6.

Growth of internet era and corporate sector dealings communication online has introduced crucial security challenges in cyber space. Statistics of recent large scale attacks defined new class of threat to online world, advanced persistent threat (APT) able to impact national security and economic stability of any country. From all APTs, botnet is one of the well-articulated and stealthy attacks to perform cybercrime. Botnet owners and their criminal organizations are continuously developing innovative ways to infect new targets into their networks and exploit them. The concept of botnet refers collection of compromised computers (bots) infected by automated software robots, that interact to accomplish some distributed task which run without human intervention for illegal purposes. They are mostly malicious in nature and allow cyber criminals to control the infected machines remotely without the victim's knowledge. They use various techniques, communication protocols and topologies in different stages of their lifecycle; also specifically they can upgrade their methods at any time. Botnet is global in nature and their target is to steal or destroy valuable information from organizations as well as individuals. In this paper we present real world botnet (APTs) survey.

2017-06-27
Venkatesan, Sridhar, Albanese, Massimiliano, Cybenko, George, Jajodia, Sushil.  2016.  A Moving Target Defense Approach to Disrupting Stealthy Botnets. Proceedings of the 2016 ACM Workshop on Moving Target Defense. :37–46.

Botnets are increasingly being used for exfiltrating sensitive data from mission-critical systems. Research has shown that botnets have become extremely sophisticated and can operate in stealth mode by minimizing their host and network footprint. In order to defeat exfiltration by modern botnets, we propose a moving target defense approach for dynamically deploying detectors across a network. Specifically, we propose several strategies based on centrality measures to periodically change the placement of detectors. Our objective is to increase the attacker's effort and likelihood of detection by creating uncertainty about the location of detectors and forcing botmasters to perform additional actions in an attempt to create detector-free paths through the network. We present metrics to evaluate the proposed strategies and an algorithm to compute a lower bound on the detection probability. We validate our approach through simulations, and results confirm that the proposed solution effectively reduces the likelihood of successful exfiltration campaigns.

2017-05-19
Fontugne, Romain, Mazel, Johan, Fukuda, Kensuke.  2016.  Characterizing Roles and Spatio-Temporal Relations of C&C Servers in Large-Scale Networks. Proceedings of the 2016 ACM International on Workshop on Traffic Measurements for Cybersecurity. :12–23.

Botnets are accountable for numerous cybersecurity threats. A lot of efforts have been dedicated to botnet intelligence, but botnets versatility and rapid adaptation make them particularly difficult to outwit. Prompt countermeasures require effective tools to monitor the evolution of botnets. Therefore, in this paper we analyze 5 months of traffic from different botnet families, and propose an unsupervised clustering technique to identify the different roles assigned to C&C servers. This technique allows us to classify servers with similar behavior and effectively identify bots contacting several servers. We also present a temporal analysis method that uncovers synchronously activated servers. Our results characterize 6 C&C server roles that are common to various botnet families. In the monitored traffic we found that servers are usually involved in a specific role, and we observed a significant number of C&C servers scanning the Internet.

2015-05-06
Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

Janbeglou, M., Naderi, H., Brownlee, N..  2014.  Effectiveness of DNS-Based Security Approaches in Large-Scale Networks. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :524-529.

The Domain Name System (DNS) is widely seen as a vital protocol of the modern Internet. For example, popular services like load balancers and Content Delivery Networks heavily rely on DNS. Because of its important role, DNS is also a desirable target for malicious activities such as spamming, phishing, and botnets. To protect networks against these attacks, a number of DNS-based security approaches have been proposed. The key insight of our study is to measure the effectiveness of security approaches that rely on DNS in large-scale networks. For this purpose, we answer the following questions, How often is DNS used? Are most of the Internet flows established after contacting DNS? In this study, we collected data from the University of Auckland campus network with more than 33,000 Internet users and processed it to find out how DNS is being used. Moreover, we studied the flows that were established with and without contacting DNS. Our results show that less than 5 percent of the observed flows use DNS. Therefore, we argue that those security approaches that solely depend on DNS are not sufficient to protect large-scale networks.

Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

Hammi, B., Khatoun, R., Doyen, G..  2014.  A Factorial Space for a System-Based Detection of Botcloud Activity. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Today, beyond a legitimate usage, the numerous advantages of cloud computing are exploited by attackers, and Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use. Such a phenomena is a major issue since it strongly increases the power of distributed massive attacks while involving the responsibility of cloud service providers that do not own appropriate solutions. In this paper, we present an original approach that enables a source-based de- tection of UDP-flood DDoS attacks based on a distributed system behavior analysis. Based on a principal component analysis, our contribution consists in: (1) defining the involvement of system metrics in a botcoud's behavior, (2) showing the invariability of the factorial space that defines a botcloud activity and (3) among several legitimate activities, using this factorial space to enable a botcloud detection.

Rrushi, J.L..  2014.  A Steganographic Approach to Localizing Botmasters. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :852-859.

Law enforcement employs an investigative approach based on marked money bills to track illegal drug dealers. In this paper we discuss research that aims at providing law enforcement with the cyber counterpart of that approach in order to track perpetrators that operate botnets. We have devised a novel steganographic approach that generates a watermark hidden within a honey token, i.e. A decoy Word document. The covert bits that comprise the watermark are carried via secret interpretation of object properties in the honey token. The encoding and decoding of object properties into covert bits follow a scheme based on bijective functions generated via a chaotic logistic map. The watermark is retrievable via a secret cryptographic key, which is generated and held by law enforcement. The honey token is leaked to a botmaster via a honey net. In the paper, we elaborate on possible means by which law enforcement can track the leaked honey token to the IP address of a botmaster's machine.

2015-05-05
Lesk, M..  2014.  Staffing for Security: Don't Optimize. Security Privacy, IEEE. 12:71-73.

Security threats are irregular, sometimes very sophisticated, and difficult to measure in an economic sense. Much published data about them comes from either anecdotes or surveys and is often either not quantified or not quantified in a way that's comparable across organizations. It's hard even to separate the increase in actual danger from year to year from the increase in the perception of danger from year to year. Staffing to meet these threats is still more a matter of judgment than science, and in particular, optimizing staff allocation will likely leave your organization vulnerable at the worst times.

Sayed, B., Traore, I..  2014.  Protection against Web 2.0 Client-Side Web Attacks Using Information Flow Control. Advanced Information Networking and Applications Workshops (WAINA), 2014 28th International Conference on. :261-268.

The dynamic nature of the Web 2.0 and the heavy obfuscation of web-based attacks complicate the job of the traditional protection systems such as Firewalls, Anti-virus solutions, and IDS systems. It has been witnessed that using ready-made toolkits, cyber-criminals can launch sophisticated attacks such as cross-site scripting (XSS), cross-site request forgery (CSRF) and botnets to name a few. In recent years, cyber-criminals have targeted legitimate websites and social networks to inject malicious scripts that compromise the security of the visitors of such websites. This involves performing actions using the victim browser without his/her permission. This poses the need to develop effective mechanisms for protecting against Web 2.0 attacks that mainly target the end-user. In this paper, we address the above challenges from information flow control perspective by developing a framework that restricts the flow of information on the client-side to legitimate channels. The proposed model tracks sensitive information flow and prevents information leakage from happening. The proposed model when applied to the context of client-side web-based attacks is expected to provide a more secure browsing environment for the end-user.

2015-04-30
Hammi, B., Khatoun, R., Doyen, G..  2014.  A Factorial Space for a System-Based Detection of Botcloud Activity. New Technologies, Mobility and Security (NTMS), 2014 6th International Conference on. :1-5.

Today, beyond a legitimate usage, the numerous advantages of cloud computing are exploited by attackers, and Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use. Such a phenomena is a major issue since it strongly increases the power of distributed massive attacks while involving the responsibility of cloud service providers that do not own appropriate solutions. In this paper, we present an original approach that enables a source-based de- tection of UDP-flood DDoS attacks based on a distributed system behavior analysis. Based on a principal component analysis, our contribution consists in: (1) defining the involvement of system metrics in a botcoud's behavior, (2) showing the invariability of the factorial space that defines a botcloud activity and (3) among several legitimate activities, using this factorial space to enable a botcloud detection.