Visible to the public Biblio

Filters: Keyword is botnets  [Clear All Filters]
2023-04-14
Saurabh, Kumar, Singh, Ayush, Singh, Uphar, Vyas, O.P., Khondoker, Rahamatullah.  2022.  GANIBOT: A Network Flow Based Semi Supervised Generative Adversarial Networks Model for IoT Botnets Detection. 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS). :1–5.
The spread of Internet of Things (IoT) devices in our homes, healthcare, industries etc. are more easily infiltrated than desktop computers have resulted in a surge in botnet attacks based on IoT devices, which may jeopardize the IoT security. Hence, there is a need to detect these attacks and mitigate the damage. Existing systems rely on supervised learning-based intrusion detection methods, which require a large labelled data set to achieve high accuracy. Botnets are onerous to detect because of stealthy command & control protocols and large amount of network traffic and hence obtaining a large labelled data set is also difficult. Due to unlabeled Network traffic, the supervised classification techniques may not be used directly to sort out the botnet that is responsible for the attack. To overcome this limitation, a semi-supervised Deep Learning (DL) approach is proposed which uses Semi-supervised GAN (SGAN) for IoT botnet detection on N-BaIoT dataset which contains "Bashlite" and "Mirai" attacks along with their sub attacks. The results have been compared with the state-of-the-art supervised solutions and found efficient in terms of better accuracy which is 99.89% in binary classification and 59% in multi classification on larger dataset, faster and reliable model for IoT Botnet detection.
2021-03-17
Haseeb, J., Mansoori, M., Welch, I..  2020.  A Measurement Study of IoT-Based Attacks Using IoT Kill Chain. 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom). :557—567.

Manufacturing limitations, configuration and maintenance flaws associated with the Internet of Things (IoT) devices have resulted in an ever-expanding attack surface. Attackers exploit IoT devices to steal private information, take part in botnets, perform Denial of Service (DoS) attacks and use their resources for the mining of cryptocurrency. In this paper, we experimentally evaluate a hypothesis that attacks on IoT devices follow the generalised Cyber Kill Chain (CKC) model. We used a medium-interaction honeypot to capture and analyse more than 30,000 attacks targeting IoT devices. We classified the steps taken by the attackers using the CKC model and extended CKC to an IoT Kill Chain (IoTKC) model. The IoTKC provides details about IoT-specific attack characteristics and attackers' activities in the exploitation of IoT devices.

2021-03-09
Zhou, B., He, J., Tan, M..  2020.  A Two-stage P2P Botnet Detection Method Based on Statistical Features. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :497—502.

P2P botnet has become one of the most serious threats to today's network security. It can be used to launch kinds of malicious activities, ranging from spamming to distributed denial of service attack. However, the detection of P2P botnet is always challenging because of its decentralized architecture. In this paper, we propose a two-stage P2P botnet detection method which only relies on several traffic statistical features. This method first detects P2P hosts based on three statistical features, and then distinguishes P2P bots from benign P2P hosts by means of another two statistical features. Experimental evaluations on real-world traffic datasets shows that our method is able to detect hidden P2P bots with a detection accuracy of 99.7% and a false positive rate of only 0.3% within 5 minutes.

Susanto, Stiawan, D., Arifin, M. A. S., Idris, M. Y., Budiarto, R..  2020.  IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning. 2020 7th International Conference on Electrical Engineering, Computer Sciences and Informatics (EECSI). :15—20.

Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results.

Injadat, M., Moubayed, A., Shami, A..  2020.  Detecting Botnet Attacks in IoT Environments: An Optimized Machine Learning Approach. 2020 32nd International Conference on Microelectronics (ICM). :1—4.

The increased reliance on the Internet and the corresponding surge in connectivity demand has led to a significant growth in Internet-of-Things (IoT) devices. The continued deployment of IoT devices has in turn led to an increase in network attacks due to the larger number of potential attack surfaces as illustrated by the recent reports that IoT malware attacks increased by 215.7% from 10.3 million in 2017 to 32.7 million in 2018. This illustrates the increased vulnerability and susceptibility of IoT devices and networks. Therefore, there is a need for proper effective and efficient attack detection and mitigation techniques in such environments. Machine learning (ML) has emerged as one potential solution due to the abundance of data generated and available for IoT devices and networks. Hence, they have significant potential to be adopted for intrusion detection for IoT environments. To that end, this paper proposes an optimized ML-based framework consisting of a combination of Bayesian optimization Gaussian Process (BO-GP) algorithm and decision tree (DT) classification model to detect attacks on IoT devices in an effective and efficient manner. The performance of the proposed framework is evaluated using the Bot-IoT-2018 dataset. Experimental results show that the proposed optimized framework has a high detection accuracy, precision, recall, and F-score, highlighting its effectiveness and robustness for the detection of botnet attacks in IoT environments.

Memos, V. A., Psannis, K. E..  2020.  AI-Powered Honeypots for Enhanced IoT Botnet Detection. 2020 3rd World Symposium on Communication Engineering (WSCE). :64—68.

Internet of Things (IoT) is a revolutionary expandable network which has brought many advantages, improving the Quality of Life (QoL) of individuals. However, IoT carries dangers, due to the fact that hackers have the ability to find security gaps in users' IoT devices, which are not still secure enough and hence, intrude into them for malicious activities. As a result, they can control many connected devices in an IoT network, turning IoT into Botnet of Things (BoT). In a botnet, hackers can launch several types of attacks, such as the well known attacks of Distributed Denial of Service (DDoS) and Man in the Middle (MitM), and/or spread various types of malicious software (malware) to the compromised devices of the IoT network. In this paper, we propose a novel hybrid Artificial Intelligence (AI)-powered honeynet for enhanced IoT botnet detection rate with the use of Cloud Computing (CC). This upcoming security mechanism makes use of Machine Learning (ML) techniques like the Logistic Regression (LR) in order to predict potential botnet existence. It can also be adopted by other conventional security architectures in order to intercept hackers the creation of large botnets for malicious actions.

Hegde, M., Kepnang, G., Mazroei, M. Al, Chavis, J. S., Watkins, L..  2020.  Identification of Botnet Activity in IoT Network Traffic Using Machine Learning. 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA). :21—27.

Today our world benefits from Internet of Things (IoT) technology; however, new security problems arise when these IoT devices are introduced into our homes. Because many of these IoT devices have access to the Internet and they have little to no security, they make our smart homes highly vulnerable to compromise. Some of the threats include IoT botnets and generic confidentiality, integrity, and availability (CIA) attacks. Our research explores botnet detection by experimenting with supervised machine learning and deep-learning classifiers. Further, our approach assesses classifier performance on unbalanced datasets that contain benign data, mixed in with small amounts of malicious data. We demonstrate that the classifiers can separate malicious activity from benign activity within a small IoT network dataset. The classifiers can also separate malicious activity from benign activity in increasingly larger datasets. Our experiments have demonstrated incremental improvement in results for (1) accuracy, (2) probability of detection, and (3) probability of false alarm. The best performance results include 99.9% accuracy, 99.8% probability of detection, and 0% probability of false alarm. This paper also demonstrates how the performance of these classifiers increases, as IoT training datasets become larger and larger.

Cui, L., Huang, D., Zheng, X..  2020.  Reliability Analysis of Concurrent Data based on Botnet Modeling. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). :825—828.

Reliability analysis of concurrent data based on Botnet modeling is conducted in this paper. At present, the detection methods for botnets are mainly focused on two aspects. The first type requires the monitoring of high-privilege systems, which will bring certain security risks to the terminal. The second type is to identify botnets by identifying spam or spam, which is not targeted. By introducing multi-dimensional permutation entropy, the impact of permutation entropy on the permutation entropy is calculated based on the data communicated between zombies, describing the complexity of the network traffic time series, and the clustering variance method can effectively solve the difficulty of the detection. This paper is organized based on the data complex structure analysis. The experimental results show acceptable performance.

Lingenfelter, B., Vakilinia, I., Sengupta, S..  2020.  Analyzing Variation Among IoT Botnets Using Medium Interaction Honeypots. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0761—0767.

Through analysis of sessions in which files were created and downloaded on three Cowrie SSH/Telnet honeypots, we find that IoT botnets are by far the most common source of malware on connected systems with weak credentials. We detail our honeypot configuration and describe a simple method for listing near-identical malicious login sessions using edit distance. A large number of IoT botnets attack our honeypots, but the malicious sessions which download botnet software to the honeypot are almost all nearly identical to one of two common attack patterns. It is apparent that the Mirai worm is still the dominant botnet software, but has been expanded and modified by other hackers. We also find that the same loader devices deploy several different botnet malware strains to the honeypot over the course of a 40 day period, suggesting multiple botnet deployments from the same source. We conclude that Mirai continues to be adapted but can be effectively tracked using medium interaction honeypots such as Cowrie.

Muhammad, A., Asad, M., Javed, A. R..  2020.  Robust Early Stage Botnet Detection using Machine Learning. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1—6.

Among the different types of malware, botnets are rising as the most genuine risk against cybersecurity as they give a stage to criminal operations (e.g., Distributed Denial of Service (DDOS) attacks, malware dispersal, phishing, and click fraud and identity theft). Existing botnet detection techniques work only on specific botnet Command and Control (C&C) protocols and lack in providing early-stage botnet detection. In this paper, we propose an approach for early-stage botnet detection. The proposed approach first selects the optimal features using feature selection techniques. Next, it feeds these features to machine learning classifiers to evaluate the performance of the botnet detection. Experiments reveals that the proposed approach efficiently classifies normal and malicious traffic at an early stage. The proposed approach achieves the accuracy of 99%, True Positive Rate (TPR) of 0.99 %, and False Positive Rate (FPR) of 0.007 % and provide an efficient detection rate in comparison with the existing approach.

Yerima, S. Y., Alzaylaee, M. K..  2020.  Mobile Botnet Detection: A Deep Learning Approach Using Convolutional Neural Networks. 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA). :1—8.

Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.

Yamaguchi, S..  2020.  Botnet Defense System and Its Basic Strategy Against Malicious Botnet. 2020 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan). :1—2.

This paper proposes a basic strategy for Botnet Defense System (BDS). BDS is a cybersecurity system that utilizes white-hat botnets to defend IoT systems against malicious botnets. Once a BDS detects a malicious botnet, it launches white-hat worms in order to drive out the malicious botnet. The proposed strategy aims at the proper use of the worms based on the worms' capability such as lifespan and secondary infectivity. If the worms have high secondary infectivity or a long lifespan, the BDS only has to launch a few worms. Otherwise, it should launch as many worms as possible. The effectiveness of the strategy was confirmed through the simulation evaluation using agent-oriented Petri nets.

Kamilin, M. H. B., Yamaguchi, S..  2020.  White-Hat Worm Launcher Based on Deep Learning in Botnet Defense System. 2020 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia). :1—2.

This paper proposes a deep learning-based white-hat worm launcher in Botnet Defense System (BDS). BDS uses white-hat botnets to defend an IoT system against malicious botnets. White-hat worm launcher literally launches white-hat worms to create white-hat botnets according to the strategy decided by BDS. The proposed launcher learns with deep learning where is the white-hat worms' right place to successfully drive out malicious botnets. Given a system situation invaded by malicious botnets, it predicts a worms' placement by the learning result and launches them. We confirmed the effect of the proposed launcher through simulating evaluation.

2021-03-04
Nugraha, B., Nambiar, A., Bauschert, T..  2020.  Performance Evaluation of Botnet Detection using Deep Learning Techniques. 2020 11th International Conference on Network of the Future (NoF). :141—149.

Botnets are one of the major threats on the Internet. They are used for malicious activities to compromise the basic network security goals, namely Confidentiality, Integrity, and Availability. For reliable botnet detection and defense, deep learning-based approaches were recently proposed. In this paper, four different deep learning models, namely Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), hybrid CNN-LSTM, and Multi-layer Perception (MLP) are applied for botnet detection and simulation studies are carried out using the CTU-13 botnet traffic dataset. We use several performance metrics such as accuracy, sensitivity, specificity, precision, and F1 score to evaluate the performance of each model on classifying both known and unknown (zero-day) botnet traffic patterns. The results show that our deep learning models can accurately and reliably detect both known and unknown botnet traffic, and show better performance than other deep learning models.

2020-09-11
Baden, Mathis, Ferreira Torres, Christof, Fiz Pontiveros, Beltran Borja, State, Radu.  2019.  Whispering Botnet Command and Control Instructions. 2019 Crypto Valley Conference on Blockchain Technology (CVCBT). :77—81.
Botnets are responsible for many large scale attacks happening on the Internet. Their weak point, which is usually targeted to take down a botnet, is the command and control infrastructure: the foundation for the diffusion of the botmaster's instructions. Hence, botmasters employ stealthy communication methods to remain hidden and retain control of the botnet. Recent research has shown that blockchains can be leveraged for under the radar communication with bots, however these methods incur fees for transaction broadcasting. This paper discusses the use of a novel technology, Whisper, for command and control instruction dissemination. Whisper allows a botmaster to control bots at virtually zero cost, while providing a peer-to-peer communication infrastructure, as well as privacy and encryption as part of its dark communication strategy. It is therefore well suited for bidirectional botnet command and control operations, and creating a botnet that is very difficult to take down.
Ashiq, Md. Ishtiaq, Bhowmick, Protick, Hossain, Md. Shohrab, Narman, Husnu S..  2019.  Domain Flux-based DGA Botnet Detection Using Feedforward Neural Network. MILCOM 2019 - 2019 IEEE Military Communications Conference (MILCOM). :1—6.
Botnets have been a major area of concern in the field of cybersecurity. There have been a lot of research works for detection of botnets. However, everyday cybercriminals are coming up with new ideas to counter the well-known detection methods. One such popular method is domain flux-based botnets in which a large number of domain names are produced using domain generation algorithm. In this paper, we have proposed a robust way of detecting DGA-based botnets using few novel features covering both syntactic and semantic viewpoints. We have used Area under ROC curve as our performance metric since it provides comprehensive information about the performance of binary classifiers at various thresholds. Results show that our approach performs significantly better than the baseline approach. Our proposed method can help in detecting established DGA bots (equipped with extensive features) as well as prospective advanced DGA bots imitating real-world domain names.
Prokofiev, Anton O., Smirnova, Yulia S..  2019.  Counteraction against Internet of Things Botnets in Private Networks. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :301—305.
This article focuses on problems related to detection and prevention of botnet threats in private Internet of Things (IoT) networks. Actual data about IoT botnets activity on the Internet is provided in the paper. Results of analysis of widespread botnets, as well as key characteristics of botnet behavior and activity on IoT devices are also provided. Features of private IoT networks are determined. The paper provides architectural features as well as functioning principles of software systems for botnet prevention in private networks. Recommendations for process of interaction between such system and a user are suggested. Suggestions for future development of the approach are formulated.
Mendes, Lucas D.P., Aloi, James, Pimenta, Tales C..  2019.  Analysis of IoT Botnet Architectures and Recent Defense Proposals. 2019 31st International Conference on Microelectronics (ICM). :186—189.
The rise in the number of devices joining the Internet of Things (IoT) has created a huge potential for distributed denial of service (DDoS) attacks, especially due to the lack of security in these computationally limited devices. Malicious actors have realized that and managed to turn large sets of IoT devices into botnets under their control. Given this scenario, this work studies botnet architectures identified so far and assesses how they are considered in the few recent defense proposals that consider botnet architectures.
ALEKSIEVA, Yulia, VALCHANOV, Hristo, ALEKSIEVA, Veneta.  2019.  An approach for host based botnet detection system. 2019 16th Conference on Electrical Machines, Drives and Power Systems (ELMA). :1—4.
Most serious occurrence of modern malware is Botnet. Botnet is a rapidly evolving problem that is still not well understood and studied. One of the main goals for modern network security is to create adequate techniques for the detection and eventual termination of Botnet threats. The article presents an approach for implementing a host-based Intrusion Detection System for Botnet attack detection. The approach is based on a variation of a genetic algorithm to detect anomalies in a case of attacks. An implementation of the approach and experimental results are presented.
Garip, Mevlut Turker, Lin, Jonathan, Reiher, Peter, Gerla, Mario.  2019.  SHIELDNET: An Adaptive Detection Mechanism against Vehicular Botnets in VANETs. 2019 IEEE Vehicular Networking Conference (VNC). :1—7.
Vehicular ad hoc networks (VANETs) are designed to provide traffic safety by enabling vehicles to broadcast information-such as speed, location and heading-through inter-vehicular communications to proactively avoid collisions. However, the attacks targeting these networks might overshadow their advantages if not protected against. One powerful threat against VANETs is vehicular botnets. In our earlier work, we demonstrated several vehicular botnet attacks that can have damaging impacts on the security and privacy of VANETs. In this paper, we present SHIELDNET, the first detection mechanism against vehicular botnets. Similar to the detection approaches against Internet botnets, we target the vehicular botnet communication and use several machine learning techniques to identify vehicular bots. We show via simulation that SHIELDNET can identify 77 percent of the vehicular bots. We propose several improvements on the VANET standards and show that their existing vulnerabilities make an effective defense against vehicular botnets infeasible.
Al-Ghushami, Abdullah, Karie, NIckson, Kebande, Victor.  2019.  Detecting Centralized Architecture-Based Botnets using Travelling Salesperson Non-Deterministic Polynomial-Hard problem-TSP-NP Technique. 2019 IEEE Conference on Application, Information and Network Security (AINS). :77—81.
The threats posed by botnets in the cyber-space continues to grow each day and it has become very hard to detect or infiltrate bots given that the botnet developers each day keep changing the propagation and attack techniques. Currently, most of these attacks have been centered on stealing computing energy, theft of personal information and Distributed Denial of Service (DDoS attacks). In this paper, the authors propose a novel technique that uses the Non-Deterministic Polynomial-Time Hardness (NP-Hard Problem) based on the Traveling Salesperson Person (TSP) that depicts that a given bot, bj, is able to visit each host on a network environment, NE, and then it returns to the botmaster in form of instruction(command) through optimal minimization of the hosts that are or may be attacked. Given that bj represents a piece of malicious code and based on TSP-NP Hard Problem which forms part of combinatorial optimization, the authors present an effective approach for the detection of the botnet. It is worth noting that the concentration of this study is basically on the centralized botnet architecture. This holistic approach shows that botnet detection accuracy can be increased with a degree of certainty and potentially decrease the chances of false positives. Nevertheless, a discussion on the possible applicability and implementation has also been given in this paper.
Spradling, Matthew, Allison, Mark, Tsogbadrakh, Tsenguun, Strong, Jay.  2019.  Toward Limiting Social Botnet Effectiveness while Detection Is Performed: A Probabilistic Approach. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :1388—1391.
The prevalence of social botnets has increased public distrust of social media networks. Current methods exist for detecting bot activity on Twitter, Reddit, Facebook, and other social media platforms. Most of these detection methods rely upon observing user behavior for a period of time. Unfortunately, the behavior observation period allows time for a botnet to successfully propagate one or many posts before removal. In this paper, we model the post propagation patterns of normal users and social botnets. We prove that a botnet may exploit deterministic propagation actions to elevate a post even with a small botnet population. We propose a probabilistic model which can limit the impact of social media botnets until they can be detected and removed. While our approach maintains expected results for non-coordinated activity, coordinated botnets will be detected before propagation with high probability.
2020-09-04
Carpentier, Eleonore, Thomasset, Corentin, Briffaut, Jeremy.  2019.  Bridging The Gap: Data Exfiltration In Highly Secured Environments Using Bluetooth IoTs. 2019 IEEE 37th International Conference on Computer Design (ICCD). :297—300.
IoT devices introduce unprecedented threats into home and professional networks. As they fail to adhere to security best practices, they are broadly exploited by malicious actors to build botnets or steal sensitive information. Their adoption challenges established security standard as classic security measures are often inappropriate to secure them. This is even more problematic in sensitive environments where the presence of insecure IoTs can be exploited to bypass strict security policies. In this paper, we demonstrate an attack against a highly secured network using a Bluetooth smart bulb. This attack allows a malicious actor to take advantage of a smart bulb to exfiltrate data from an air gapped network.
2020-08-14
Walla, Sebastian, Rossow, Christian.  2019.  MALPITY: Automatic Identification and Exploitation of Tarpit Vulnerabilities in Malware. 2019 IEEE European Symposium on Security and Privacy (EuroS P). :590—605.
Law enforcement agencies regularly take down botnets as the ultimate defense against global malware operations. By arresting malware authors, and simultaneously infiltrating or shutting down a botnet's network infrastructures (such as C2 servers), defenders stop global threats and mitigate pending infections. In this paper, we propose malware tarpits, an orthogonal defense that does not require seizing botnet infrastructures, and at the same time can also be used to slow down malware spreading and infiltrate its monetization techniques. A tarpit is a network service that causes a client to stay busy with a network operation. Our work aims to automatically identify network operations used by malware that will block the malware either forever or for a significant amount of time. We describe how to non-intrusively exploit such tarpit vulnerabilities in malware to slow down or, ideally, even stop malware. Using dynamic malware analysis, we monitor how malware interacts with the POSIX and Winsock socket APIs. From this, we infer network operations that would have blocked when provided certain network inputs. We augment this vulnerability search with an automated generation of tarpits that exploit the identified vulnerabilities. We apply our prototype MALPITY on six popular malware families and discover 12 previously-unknown tarpit vulnerabilities, revealing that all families are susceptible to our defense. We demonstrate how to, e.g., halt Pushdo's DGA-based C2 communication, hinder SalityP2P peers from receiving commands or updates, and stop Bashlite's spreading engine.
2020-08-07
Carpentier, Eleonore, Thomasset, Corentin, Briffaut, Jeremy.  2019.  Bridging The Gap: Data Exfiltration In Highly Secured Environments Using Bluetooth IoTs.

IoT devices introduce unprecedented threats into home and professional networks. As they fail to adhere to security best practices, they are broadly exploited by malicious actors to build botnets or steal sensitive information. Their adoption challenges established security standard as classic security measures are often inappropriate to secure them. This is even more problematic in sensitive environments where the presence of insecure IoTs can be exploited to bypass strict security policies. In this paper, we demonstrate an attack against a highly secured network using a Bluetooth smart bulb. This attack allows a malicious actor to take advantage of a smart bulb to exfiltrate data from an air gapped network.