Visible to the public Biblio

Filters: Keyword is Microgrids  [Clear All Filters]
2023-07-19
Moradi, Majid, Heydari, Mojtaba, Zarei, Seyed Fariborz.  2022.  Distributed Secondary Control for Voltage Restoration of ESSs in a DC Microgrid. 2022 13th Power Electronics, Drive Systems, and Technologies Conference (PEDSTC). :431—436.
Due to the intermittent nature of renewable energy sources, the implementation of energy storage systems (ESSs) is crucial for the reliable operation of microgrids. This paper proposes a peer-to-peer distributed secondary control scheme for accurate voltage restoration of distributed ESS units in a DC microgrid. The presented control framework only requires local and neighboring information to function. Besides, the ESSs communicate with each other through a sparse network in a discrete fashion compared to existing approaches based on continuous data exchange. This feature ensures reliability, expandability, and flexibility of the proposed strategy for a more practical realization of distributed control paradigm. A simulation case study is presented using MATLAB/Simulink to illustrate the performance and effectiveness of the proposed control strategy.
Vekić, Marko, Isakov, Ivana, Rapaić, Milan, Grabić, Stevan, Todorović, Ivan, Porobić, Vlado.  2022.  Decentralized microgrid control "beyond droop". 2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). :1—5.
Various approaches of microgrid operation have been proposed, albeit with noticeable issues such as power-sharing, control of frequency and voltage excursions, applicability on different grids, etc. This paper proposes a goal function-based, decentralized control that addresses the mentioned problems and secures the microgrid stability by constraining the frequency and node deviations across the grid while simultaneously supporting the desired active power exchange between prosumer nodes. The control algorithm is independent of network topology and enables arbitrary node connection, i.e. seamless microgrid expandability. To confirm the effectiveness of the proposed control strategy, simulation results are presented and discussed.
2023-04-14
Wang, Bingyu, Sun, Qiuye, Fang, Fang.  2022.  Consensus-based Frequency Control of a Cyber-physical Power System under Two Types of DDoS Attacks. 2022 34th Chinese Control and Decision Conference (CCDC). :1060–1065.
The consensus-based frequency control relying on a communication system is used to restore the frequency deviations introduced by the primary droop control in an islanded AC microgrid, a typical cyber-physical power system(CPPS). This paper firstly studies the performance of the CPPS under two types of Distributed Denial of Service (DDoS ) attacks, finds that the intelligent attacks may cause more damage than the brute force attacks, and analyzes some potential defense strategies of the CPPS from two points of view. Some simulation results are also given to show the performance of both the physical and cyber system of the CPPS under different operation conditions.
ISSN: 1948-9447
2023-02-03
Sarapan, Waranyu, Boonrakchat, Nonthakorn, Paudel, Ashok, Booraksa, Terapong, Boonraksa, Promphak, Marungsri, Boonruang.  2022.  Optimal Peer-to-Peer Energy Trading by Applying Blockchain to Islanded Microgrid Considering V2G. 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :1–4.
Energy trading in small groups or microgrids is interesting to study. The energy market may overgrow in the future, so accessing the energy market by small prosumers may not be difficult anymore. This paper has modeled a decentralized P2P energy trading and exchange system in a microgrid group. The Islanded microgrid system is simulated to create a small energy producer and consumer trading situation. The simulation results show the increasing energy transactions and profit when including V2G as an energy storage device. In addition, blockchain is used for system security because a peer-to-peer marketplace has no intermediary control.
2023-01-20
Boiarkin, Veniamin, Rajarajan, Muttukrishnan.  2022.  A novel Blockchain-Based Data-Aggregation scheme for Edge-Enabled Microgrid of Prosumers. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :63—68.

The concept of a microgrid has emerged as a promising solution for the management of local groups of electricity consumers and producers. The use of end-users' energy usage data can help in increasing efficient operation of a microgrid. However, existing data-aggregation schemes for a microgrid suffer different cyber attacks and do not provide high level of accuracy. This work aims at designing a privacy-preserving data-aggregation scheme for a microgrid of prosumers that achieves high level of accuracy, thereby benefiting to the management and control of a microgrid. First, a novel smart meter readings data protection mechanism is proposed to ensure privacy of prosumers by hiding the real energy usage data from other parties. Secondly, a blockchain-based data-aggregation scheme is proposed to ensure privacy of the end-users, while achieving high level of accuracy in terms of the aggregated data. The proposed data-aggregation scheme is evaluated using real smart meter readings data from 100 prosumers. The results show that the proposed scheme ensures prosumers' privacy and achieves high level of accuracy, while it is secure against eavesdropping and man-in-the-middle cyber attacks.

Cheng, Xi, Liang, Yafeng, Qiu, Jianhong, Zhao, XiaoLi, Ma, Lihong.  2022.  Risk Assessment Method of Microgrid System Based on Random Matrix Theory. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:705—709.
In view of the problems that the existing power grid risk assessment mainly depends on the data fusion of decision-making level, which has strong subjectivity and less effective information, this paper proposes a risk assessment method of microgrid system based on random matrix theory. Firstly, the time series data of multiple sensors are constructed into a high-dimensional matrix according to the different parameter types and nodes; Then, based on random matrix theory and sliding time window processing, the average spectral radius sequence is calculated to characterize the state of microgrid system. Finally, an example is given to verify the effectiveness of the method.
2022-12-01
Zhang, Jingqiu, Raman, Gurupraanesh, Raman, Gururaghav, Peng, Jimmy Chih-Hsien, Xiao, Weidong.  2021.  A Resilient Scheme for Mitigating False Data Injection Attacks in Distributed DC Microgrids. 2021 IEEE Energy Conversion Congress and Exposition (ECCE). :1440–1446.
Although DC microgrids using a distributed cooperative control architecture can avoid the instability or shutdown issues caused by a single-point failure as compared to the centralized approach, limited global information in the former makes it difficult to detect cyber attacks. Here, we present a false data injection attack (FDIA)–-termed as a local control input attack–-targeting voltage observers in the secondary controllers and control loops in the primary controllers. Such an attack cannot be detected by only observing the performance of the estimated voltage of each agent, thereby posing a potential threat to the system operation. To address this, a detection method using the outputs of the voltage observers is developed to identify the exact location of an FDIA. The proposed approach is based on the characteristics of the distributed cooperative network and avoids heavy dependency on the system model parameters. Next, an event-driven mitigation approach is deployed to substitute the attacked element with a reconstructed signal upon the detection of an attack. Finally, the effectiveness of the proposed resilient scheme is validated using simulation results.
2022-04-20
Venkataramanan, Venkatesh, Srivastava, Anurag K., Hahn, Adam, Zonouz, Saman.  2019.  Measuring and Enhancing Microgrid Resiliency Against Cyber Threats. IEEE Transactions on Industry Applications. 55:6303—6312.
Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this study, device-level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device-level properties is proposed. Resiliency is defined as the system ability to provide energy to critical loads even in extreme contingencies and depends on system ability to withstand, predict, and recover. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better proactive or remedial control actions to improve resiliency.
Venkataramanan, V., Srivastava, A., Hahn, A., Zonouz, S..  2018.  Enhancing Microgrid Resiliency Against Cyber Vulnerabilities. 2018 IEEE Industry Applications Society Annual Meeting (IAS). :1—8.
Recent cyber attacks on the power grid have been of increasing complexity and sophistication. In order to understand the impact of cyber-attacks on the power system resiliency, it is important to consider an holistic cyber-physical system specially with increasing industrial automation. In this work, device level resilience properties of the various controllers and their impact on the microgrid resiliency is studied. In addition, a cyber-physical resiliency metric considering vulnerabilities, system model, and device level properties is proposed. A use case is presented inspired by the recent Ukraine cyber-attack. A use case has been presented to demonstrate application of the developed cyber-physical resiliency metric to enhance situational awareness of the operator, and enable better control actions to improve resiliency.
2022-04-18
Ahmed-Zaid, Said, Loo, Sin Ming, Valdepena-Delgado, Andres, Beam, Theron.  2021.  Cyber-Physical Security Assessment and Resilience of a Microgrid Testbed. 2021 Resilience Week (RWS). :1–3.
In order to identify potential weakness in communication and data in transit, a microgrid testbed is being developed at Boise State University. This testbed will be used to verify microgrid models and communication methods in an effort to increase the resiliency of these systems to cyber-attacks. If vulnerabilities are found in these communication methods, then risk mitigation techniques will be developed to address them.
2022-03-23
Karimi, A., Ahmadi, A., Shahbazi, Z., Shafiee, Q., Bevrani, H..  2021.  A Resilient Control Method Against False Data Injection Attack in DC Microgrids. 2021 7th International Conference on Control, Instrumentation and Automation (ICCIA). :1—6.

The expression of cyber-attacks on communication links in smart grids has emerged recently. In microgrids, cooperation between agents through communication links is required, thus, microgrids can be considered as cyber-physical-systems and they are vulnerable to cyber-attack threats. Cyber-attacks can cause damages in control systems, therefore, the resilient control methods are necessary. In this paper, a resilient control approach against false data injection attack is proposed for secondary control of DC microgrids. In the proposed framework, a PI controller with an adjustable gain is utilized to eliminate the injected false data. The proposed control method is employed for both sensor and link attacks. Convergence analysis of the measurement sensors and the secondary control objectives under the studied control method is performed. Finally, a DC microgrid with four units is built in Matlab/Simulink environment to verify the proposed approach.

2022-02-10
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  Energy-Storage Fed Smart Inverters for Mitigation of Voltage Fluctuations in Islanded Microgrids. 2020 IEEE Electric Power and Energy Conference (EPEC). :1–6.
The continuous integration of intermittent low-carbon energy resources makes islanded microgrids vulnerable to voltage fluctuations. Besides, different dynamic response of synchronous-based and inverter-based distributed generation (DG) units can result in an instantaneous power imbalance between supply and demand during transients. As a result, the ac-bus voltage of microgrid starts oscillating which might have severe consequences such as blackouts. This paper modifies the conventional control scheme of battery energy storage systems (BESSs) to participate in improving the dynamic behavior of islanded microgrids by mitigating the voltage fluctuations. A piecewise linear-elliptic (PLE) droop is proposed and employed in BESS to achieve an enhanced voltage profile by injecting/absorbing reactive power during transients. In this way, the conventional inverter implemented in BESS turns into a smart inverter to cope with fast transients. Using the proposed approach in this paper, any linear droop curve with a specified coefficient can be replaced by a PLE droop curve. Compared with linear droop, an enhanced dynamic response is achieved by utilizing the proposed PLE droop. Case study results are presented using PSCAD/EMTDC to demonstrate the superiority of the proposed approach in improving the dynamic behavior of islanded microgrids.
ISSN: 2381-2842
Pilehvar, Mohsen S., Mirafzal, Behrooz.  2020.  PV-Fed Smart Inverters for Mitigation of Voltage and Frequency Fluctuations in Islanded Microgrids. 2020 International Conference on Smart Grids and Energy Systems (SGES). :807–812.
The vulnerability of islanded microgrids to voltage and frequency variations is due to the presence of low-inertia distributed generation (DG) units. Besides, the considerable difference between the inertia of synchronous-based and inverter-based DGs results in a power mismatch between generation and consumption during abnormal conditions. As a result, both voltage and frequency of microgrid ac-bus start oscillating which might lead to blackouts. This paper deploys the traditional controller of photovoltaic (PV) units to improve the dynamics of islanded microgrids by reducing the voltage and frequency deviations. To this end, an adaptive piecewise droop (APD) curve is presented and implemented in PV units to attain a faster balance between supply and demand during transients, leading to an enhanced frequency response. Besides, the reactive-power control loop is equipped with a droop characteristic which enables the PV units to inject/absorb reactive power during transients and participate in voltage-profile enhancement of the system. Case study results are presented using PSCAD/EMTDC to confirm the validity of proposed method in improving the dynamic behavior of islanded microgrids.
2022-02-04
Roy, Vishwajit, Noureen, Subrina Sultana, Atique, Sharif, Bayne, Stephen, Giesselmann, Michael.  2021.  Intrusion Detection from Synchrophasor Data propagation using Cyber Physical Platform. 2021 IEEE Conference on Technologies for Sustainability (SusTech). :1–5.
Some of the recent reports show that Power Grid is a target of attack and gradually the need for understanding the security of Grid network is getting a prime focus. The Department of Homeland Security has imposed focus on Cyber Threats on Power Grid in their "Cyber Security Strategy,2018" [1] . DHS has focused on innovations to manage risk attacks on Power System based national resources. Power Grid is a cyber physical system which consists of power flow and data transmission. The important part of a microgrid is the two-way power flow which makes the system complex on monitoring and control. In this paper, we have tried to study different types of attacks which change the data propagation of Synchrophasor, network communication interruption behavior and find the data propagation scenario due to attack. The focus of the paper is to develop a platform for Synchrophasor based data network attack study which is a part of Microgrid design. Different types of intrusion models were studied to observe change in Synchrophasor data pattern which will help for further prediction to improve Microgrid resiliency for different types of cyber-attack.
2021-09-16
Beg, Omar Ali, Yadav, Ajay P., Johnson, Taylor T., Davoudi, Ali.  2020.  Formal Online Resiliency Monitoring in Microgrids. 2020 Resilience Week (RWS). :99–105.
This work adopts an online resiliency monitoring framework employing metric temporal logic (MTL) under cyber-physical anomalies, namely false-data injection attacks, denial-of-service attacks, and physical faults. Such anomalies adversely affect the frequency synchronization, load sharing, and voltage regulation in microgrids. MTL formalism is adopted to monitor the outputs of inverters/converters against operational bounds, detect and quantify cyber-physical anomalies, monitor the microgrid's resiliency during runtime, and compare mitigation strategies. Since the proposed framework does not require system knowledge, it can be deployed on a complex microgrid. This is verified using an IEEE 34-bus feeder system and a DC microgrid cluster in a controller/hardware-in-the-loop environment.
Sarker, Partha S., Singh Saini, Amandeep, Sajan, K S, Srivastava, Anurag K..  2020.  CP-SAM: Cyber-Power Security Assessment and Resiliency Analysis Tool for Distribution System. 2020 Resilience Week (RWS). :188–193.
Cyber-power resiliency analysis of the distribution system is becoming critical with increase in adverse cyberevents. Distribution network operators need to assess and analyze the resiliency of the system utilizing the analytical tool with a carefully designed visualization and be driven by data and model-based analytics. This work introduces the Cyber-Physical Security Assessment Metric (CP-SAM) visualization tool to assist operators in ensuring the energy supply to critical loads during or after a cyber-attack. CP-SAM also provides decision support to operators utilizing measurement data and distribution power grid model and through well-designed visualization. The paper discusses the concepts of cyber-physical resiliency, software design considerations, open-source software components, and use cases for the tool to demonstrate the implementation and importance of the developed tool.
Venkataramanan, Venkatesh, Hahn, Adam, Srivastava, Anurag.  2020.  CP-SAM: Cyber-Physical Security Assessment Metric for Monitoring Microgrid Resiliency. IEEE Transactions on Smart Grid. 11:1055–1065.
Trustworthy and secure operation of the cyber-power system calls for resilience against malicious and accidental failures. The objective of a resilient system is to withstand and recover operation of the system to supply critical loads despite multiple contingencies in the system. To take timely actions, we need to continuously measure the cyberphysical security of the system. We propose a cyber-physical security assessment metric (CP-SAM) based on quantitative factors affecting resiliency and utilizing concepts from graph theoretic analysis, probabilistic model of availability, attack graph metrics, and vulnerabilities across different layers of the microgrid system. These factors are integrated into a single metric using a multi-criteria decision making (MCDM) technique, Choquet Integral to compute CP-SAM. The developed metric will be valuable for i) monitoring the microgrid resiliency considering a holistic cyber-physical model; and ii) enable better decision-making to select best possible mitigation strategies towards resilient microgrid system. Developed CP-SAM can be extended for active distribution system and has been validated in a real-world power-grid test-bed to monitor the microgrid resiliency.
2021-08-31
Tang, Zefan, Qin, Yanyuan, Jiang, Zimin, Krawec, Walter O., Zhang, Peng.  2020.  Quantum-Secure Networked Microgrids. 2020 IEEE Power Energy Society General Meeting (PESGM). :1—5.
The classical key distribution systems used for data transmission in networked microgrids (NMGs) rely on mathematical assumptions, which however can be broken by attacks from quantum computers. This paper addresses this quantum-era challenge by using quantum key distribution (QKD). Specifically, the novelty of this paper includes 1) a QKD-enabled communication architecture it devises for NMGs, 2) a real-time QKD- enabled NMGs testbed it builds in an RTDS environment, and 3) a novel two-level key pool sharing (TLKPS) strategy it designs to improve the system resilience against cyberattacks. Test results validate the effectiveness of the presented strategy, and provide insightful resources for building quantum-secure NMGs.
2021-06-24
Ulrich, Jacob, Rieger, Craig, Grandio, Javier, Manic, Milos.  2020.  Cyber-Physical Architecture for Automated Responses (CyPhAAR) Using SDN in Adversarial OT Environments. 2020 Resilience Week (RWS). :55–63.
The ability to react to a malicious attack starts with high fidelity recognition, and with that, an agile response to the attack. The current Operational Technology (OT) systems for a critical infrastructure include an intrusion detection system (IDS), but the ability to adapt to an intrusion is a human initiated response. Orchestrators, which are coming of age in the financial sector and allow for levels of automated response, are not prevalent in the OT space. To evolve to such responses in the OT space, a tradeoff analysis is first needed. This tradeoff analysis should evaluate the mitigation benefits of responses versus the physical affects that result. Providing an informed and automated response decision. This paper presents a formulation of a novel tradeoff analysis and its use in advancing a cyber-physical architecture for automated responses (CyPhAAR).
2021-06-02
Quigley, Kevin, Enslin, Johan H., Nazir, Moazzam, Greenwood, Austin.  2020.  Microgrid Design and Control of a Hybrid Building Complex. 2020 IEEE 11th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). :51—56.
Microgrids are a promising alternative to the traditional distribution systems due to their highly desirable features, such as, reliability, resiliency, and efficiency. This paper covers the design, simulation, and economic analysis of a theoretically designed modern, mixed-use commercial and residential building on a feeder in Charleston, SC, USA. The designed system is simulated in PSCAD/EMTDC. The system combines a natural gas CHP turbine and generator block set, solar photovoltaics (PV), and a battery energy storage system (BESS). It is planned to provide power through a DC lighting bus and an AC to several different commercial load profiles as well as 40 apartments of varying sizes. Additionally, a comprehensive economic analysis is completed with available or estimated pricing to prove the feasibility of such a project.
2021-05-25
Siritoglou, Petros, Oriti, Giovanna.  2020.  Distributed Energy Resources Design Method to Improve Energy Security in Critical Facilities. 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1–6.

This paper presents a user-friendly design method for accurately sizing the distributed energy resources of a stand-alone microgrid to meet the critical load demands of a military, commercial, industrial, or residential facility when the utility power is not available. The microgrid combines renewable resources such as photovoltaics (PV) with an energy storage system to increase energy security for facilities with critical loads. The design tool's novelty includes compliance with IEEE standards 1562 and 1013 and addresses resilience, which is not taken into account in existing design methods. Several case studies, simulated with a physics-based model, validate the proposed design method. Additionally, the design and the simulations were validated by 24-hour laboratory experiments conducted on a microgrid assembled using commercial off the shelf components.

2021-05-05
Ulrich, Jacob, McJunkin, Timothy, Rieger, Craig, Runyon, Michael.  2020.  Scalable, Physical Effects Measurable Microgrid for Cyber Resilience Analysis (SPEMMCRA). 2020 Resilience Week (RWS). :194—201.

The ability to advance the state of the art in automated cybersecurity protections for industrial control systems (ICS) has as a prerequisite of understanding the trade-off space. That is, to enable a cyber feedback loop in a control system environment you must first consider both the security mitigation available, the benefits and the impacts to the control system functionality when the mitigation is used. More damaging impacts could be precipitated that the mitigation was intended to rectify. This paper details networked ICS that controls a simulation of the frequency response represented with the swing equation. The microgrid loads and base generation can be balanced through the control of an emulated battery and power inverter. The simulated plant, which is implemented in Raspberry Pi computers, provides an inexpensive platform to realize the physical effects of cyber attacks to show the trade-offs of available mitigating actions. This network design can include a commercial ICS controller and simple plant or emulated plant to introduce real world implementation of feedback controls, and provides a scalable, physical effects measurable microgrid for cyber resilience analysis (SPEMMCRA).

2021-03-22
Hosseinipour, A., Hojabri, H..  2020.  Small-Signal Stability Analysis and Active Damping Control of DC Microgrids Integrated With Distributed Electric Springs. IEEE Transactions on Smart Grid. 11:3737–3747.
Series DC electric springs (DCESs) are a state-of-the-art demand-side management (DSM) technology with the capability to reduce energy storage requirements of DC microgrids by manipulating the power of non-critical loads (NCLs). As the stability of DC microgrids is highly prone to dynamic interactions between the system active and passive components, this study intends to conduct a comprehensive small-signal stability analysis of a community DC microgrid integrated with distributed DCESs considering the effect of destabilizing constant power loads (CPLs). For this purpose, after deriving the small-signal model of a DCES-integrated microgrid, the sensitivity of the system dominant frequency modes to variations of various physical and control parameters is evaluated by means of eigenvalue analysis. Next, an active damping control method based on virtual RC parallel impedance is proposed for series DCESs to compensate for their slow dynamic response and to provide a dynamic stabilization function within the microgrid. Furthermore, impedance-based stability analysis is utilized to study the DC microgrid expandability in terms of integration with multiple DCESs. Finally, several case studies are presented to verify analytical findings of the paper and to evaluate the dynamic performance of the DC microgrid.
2021-02-08
Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
2020-12-21
Cheng, Z., Chow, M.-Y..  2020.  An Augmented Bayesian Reputation Metric for Trustworthiness Evaluation in Consensus-based Distributed Microgrid Energy Management Systems with Energy Storage. 2020 2nd IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES). 1:215–220.
Consensus-based distributed microgrid energy management system is one of the most used distributed control strategies in the microgrid area. To improve its cybersecurity, the system needs to evaluate the trustworthiness of the participating agents in addition to the conventional cryptography efforts. This paper proposes a novel augmented reputation metric to evaluate the agents' trustworthiness in a distributed fashion. The proposed metric adopts a novel augmentation method to substantially improve the trust evaluation and attack detection performance under three typical difficult-to-detect attack patterns. The proposed metric is implemented and validated on a real-time HIL microgrid testbed.