Visible to the public Biblio

Filters: Keyword is Storms  [Clear All Filters]
2023-04-14
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
2022-07-01
Matri, Pierre, Ross, Robert.  2021.  Neon: Low-Latency Streaming Pipelines for HPC. 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). :698—707.
Real time data analysis in the context of e.g. realtime monitoring or computational steering is an important tool in many fields of science, allowing scientists to make the best use of limited resources such as sensors and HPC platforms. These tools typically rely on large amounts of continuously collected data that needs to be processed in near-real time to avoid wasting compute, storage, and networking resources. Streaming pipelines are a natural fit for this use case but are inconvenient to use on high-performance computing (HPC) systems because of the diverging system software environment with big data, increasing both the cost and the complexity of the solution. In this paper we propose Neon, a clean-slate design of a streaming data processing framework for HPC systems that enables users to create arbitrarily large streaming pipelines. The experimental results on the Bebop supercomputer show significant performance improvements compared with Apache Storm, with up to 2x increased throughput and reduced latency.
2022-03-08
Lee, Sungwon, Ha, Jeongwon, Seo, Junho, Kim, Dongkyun.  2021.  Avoiding Content Storm Problem in Named Data Networking. 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN). :126–128.
Recently, methods are studied to overcome various problems for Named Data Networking(NDN). Among them, a new method which can overcome content storm problem is required to reduce network congestion and deliver content packet to consumer reliably. According to the various studies, the content storm problems could be overcame by scoped interest flooding. However, because these methods do not considers not only network congestion ratio but also the number another different paths, the correspond content packets could be transmitted unnecessary and network congestion could be worse. Therefore, in this paper, we propose a new content forwarding method for NDN to overcome the content storm problem. In the proposed method, if the network is locally congested and another paths are generated, an intermediate node could postpone or withdraw the content packet transmission to reduce congestion.
2021-08-17
Jaiswal, Ayshwarya, Dwivedi, Vijay Kumar, Yadav, Om Prakash.  2020.  Big Data and its Analyzing Tools : A Perspective. 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). :560–565.
Data are generated and stored in databases at a very high speed and hence it need to be handled and analyzed properly. Nowadays industries are extensively using Hadoop and Spark to analyze the datasets. Both the frameworks are used for increasing processing speeds in computing huge complex datasets. Many researchers are comparing both of them. Now, the big questions arising are, Is Spark a substitute for Hadoop? Is hadoop going to be replaced by spark in mere future?. Spark is “built on top of” Hadoop and it extends the model to deploy more types of computations which incorporates Stream Processing and Interactive Queries. No doubt, Spark's execution speed is much faster than Hadoop, but talking in terms of fault tolerance, hadoop is slightly more fault tolerant than spark. In this article comparison of various bigdata analytics tools are done and Hadoop and Spark are discussed in detail. This article further gives an overview of bigdata, spark and hadoop issues. In this survey paper, the approaches to resolve the issues of spark and hadoop are discussed elaborately.
2020-06-01
Ye, Yu, Guo, Jun, Xu, Xunjian, Li, Qinpu, Liu, Hong, Di, Yuelun.  2019.  High-risk Problem of Penetration Testing of Power Grid Rainstorm Disaster Artificial Intelligence Prediction System and Its Countermeasures. 2019 IEEE 3rd Conference on Energy Internet and Energy System Integration (EI2). :2675–2680.
System penetration testing is an important measure of discovering information system security issues. This paper summarizes and analyzes the high-risk problems found in the penetration testing of the artificial storm prediction system for power grid storm disasters from four aspects: application security, middleware security, host security and network security. In particular, in order to overcome the blindness of PGRDAIPS current SQL injection penetration test, this paper proposes a SQL blind bug based on improved second-order fragmentation reorganization. By modeling the SQL injection attack behavior and comparing the SQL injection vulnerability test in PGRDAIPS, this method can effectively reduce the blindness of SQL injection penetration test and improve its accuracy. With the prevalence of ubiquitous power internet of things, the electric power information system security defense work has to be taken seriously. This paper can not only guide the design, development and maintenance of disaster prediction information systems, but also provide security for the Energy Internet disaster safety and power meteorological service technology support.
2020-02-18
Chaturvedi, Shilpa, Simmhan, Yogesh.  2019.  Toward Resilient Stream Processing on Clouds Using Moving Target Defense. 2019 IEEE 22nd International Symposium on Real-Time Distributed Computing (ISORC). :134–142.
Big data platforms have grown popular for real-time stream processing on distributed clusters and clouds. However, execution of sensitive streaming applications on shared computing resources increases their vulnerabilities, and may lead to data leaks and injection of spurious logic that can compromise these applications. Here, we adopt Moving Target Defense (MTD) techniques into Fast Data platforms, and propose MTD strategies by which we can mitigate these attacks. Our strategies target the platform, application and data layers, which make these reusable, rather than the OS, virtual machine, or hardware layers, which are environment specific. We use Apache Storm as the canonical distributed stream processing platform for designing our MTD strategies, and offer a preliminary evaluation that indicates the feasibility and evaluates the performance overheads.
2019-03-06
Jaeger, D., Cheng, F., Meinel, C..  2018.  Accelerating Event Processing for Security Analytics on a Distributed In-Memory Platform. 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech). :634-643.

The analysis of security-related event logs is an important step for the investigation of cyber-attacks. It allows tracing malicious activities and lets a security operator find out what has happened. However, since IT landscapes are growing in size and diversity, the amount of events and their highly different representations are becoming a Big Data challenge. Unfortunately, current solutions for the analysis of security-related events, so called Security Information and Event Management (SIEM) systems, are not able to keep up with the load. In this work, we propose a distributed SIEM platform that makes use of highly efficient distributed normalization and persists event data into an in-memory database. We implement the normalization on common distribution frameworks, i.e. Spark, Storm, Trident and Heron, and compare their performance with our custom-built distribution solution. Additionally, different tuning options are introduced and their speed advantage is presented. In the end, we show how the writing into an in-memory database can be tuned to achieve optimal persistence speed. Using the proposed approach, we are able to not only fully normalize, but also persist more than 20 billion events per day with relatively small client hardware. Therefore, we are confident that our approach can handle the load of events in even very large IT landscapes.

2015-05-06
Badis, H., Doyen, G., Khatoun, R..  2014.  Understanding botclouds from a system perspective: A principal component analysis. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-9.

Cloud computing is gaining ground and becoming one of the fast growing segments of the IT industry. However, if its numerous advantages are mainly used to support a legitimate activity, it is now exploited for a use it was not meant for: malicious users leverage its power and fast provisioning to turn it into an attack support. Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use since they can be setup on demand and at very large scale without requiring a long dissemination phase nor an expensive deployment costs. For cloud service providers, preventing their infrastructure from being turned into an Attack as a Service delivery model is very challenging since it requires detecting threats at the source, in a highly dynamic and heterogeneous environment. In this paper, we present the result of an experiment campaign we performed in order to understand the operational behavior of a botcloud used for a DDoS attack. The originality of our work resides in the consideration of system metrics that, while never considered for state-of-the-art botnets detection, can be leveraged in the context of a cloud to enable a source based detection. Our study considers both attacks based on TCP-flood and UDP-storm and for each of them, we provide statistical results based on a principal component analysis, that highlight the recognizable behavior of a botcloud as compared to other legitimate workloads.

2015-04-30
Badis, H., Doyen, G., Khatoun, R..  2014.  Understanding botclouds from a system perspective: A principal component analysis. Network Operations and Management Symposium (NOMS), 2014 IEEE. :1-9.

Cloud computing is gaining ground and becoming one of the fast growing segments of the IT industry. However, if its numerous advantages are mainly used to support a legitimate activity, it is now exploited for a use it was not meant for: malicious users leverage its power and fast provisioning to turn it into an attack support. Botnets supporting DDoS attacks are among the greatest beneficiaries of this malicious use since they can be setup on demand and at very large scale without requiring a long dissemination phase nor an expensive deployment costs. For cloud service providers, preventing their infrastructure from being turned into an Attack as a Service delivery model is very challenging since it requires detecting threats at the source, in a highly dynamic and heterogeneous environment. In this paper, we present the result of an experiment campaign we performed in order to understand the operational behavior of a botcloud used for a DDoS attack. The originality of our work resides in the consideration of system metrics that, while never considered for state-of-the-art botnets detection, can be leveraged in the context of a cloud to enable a source based detection. Our study considers both attacks based on TCP-flood and UDP-storm and for each of them, we provide statistical results based on a principal component analysis, that highlight the recognizable behavior of a botcloud as compared to other legitimate workloads.