Biblio
Software Defined Networking (SDN) provides opportunities for flexible and dynamic traffic engineering. However, in current SDN systems, routing strategies are based on traditional mechanisms which lack in real-time modification and less efficient resource utilization. To overcome these limitations, deep learning is used in this paper to improve the routing computation in SDN. This paper proposes Convolutional Deep Reinforcement Learning (CoDRL) model which is based on deep reinforcement learning agent for routing optimization in SDN to minimize the mean network delay and packet loss rate. The CoDRL model consists of Deep Deterministic Policy Gradients (DDPG) deep agent coupled with Convolution layer. The proposed model tends to automatically adapts the dynamic packet routing using network data obtained through the SDN controller, and provides the routing configuration that attempts to reduce network congestion and minimize the mean network delay. Hence, the proposed deep agent exhibits good convergence towards providing routing configurations that improves the network performance.
The traditional network used today is unable to meet the increasing needs of technology in terms of management, scaling, and performance criteria. Major developments in information and communication technologies show that the traditional network structure is quite lacking in meeting the current requirements. In order to solve these problems, Software Defined Network (SDN) is capable of responding as it, is flexible, easier to manage and offers a new structure. Software Defined Networks have many advantages over traditional network structure. However, it also brings along many security threats due to its new architecture. For example, the DoS attack, which overloads the controller's processing and communication capacity in the SDN structure, is a significant threat. Mobile Ad Hoc Network (MANET), which is one of the wireless network technologies, is different from SDN technology. MANET is exposed to various attacks such as DoS due to its security vulnerabilities. The aim of the study is to reveal the security problems in SDN structure presented with a new understanding. This is based on the currently used network structures such as MANET. The study consists of two parts. First, DoS attacks against the SDN controller were performed. Different SDN controllers were used for more accurate results. Second, MANET was established and DoS attacks against this network were performed. Different MANET routing protocols were used for more accurate results. According to the scenario, attacks were performed and the performance values of the networks were tested. The reason for using two different networks in this study is to compare the performance values of these networks at the time of attack. According to the test results, both networks were adversely affected by the attacks. It was observed that network performance decreased in MANET structure but there was no network interruption. The SDN controller becomes dysfunctional and collapses as a result of the attack. While the innovations offered by the SDN structure are expected to provide solutions to many problems in traditional networks, there are still many vulnerabilities for network security.
Industrial control systems (ICS) are becoming more integral to modern life as they are being integrated into critical infrastructure. These systems typically lack application layer encryption and the placement of common network intrusion services have large blind spots. We propose the novel architecture, Cloud Based Intrusion Detection and Prevention System (CB-IDPS), to detect and prevent threats in ICS networks by using software defined networking (SDN) to route traffic to the cloud for inspection using network function virtualization (NFV) and service function chaining. CB-IDPS uses Amazon Web Services to create a virtual private cloud for packet inspection. The CB-IDPS framework is designed with considerations to the ICS delay constraints, dynamic traffic routing, scalability, resilience, and visibility. CB-IDPS is presented in the context of a micro grid energy management system as the test case to prove that the latency of CB-IDPS is within acceptable delay thresholds. The implementation of CB-IDPS uses the OpenDaylight software for the SDN controller and commonly used network security tools such as Zeek and Snort. To our knowledge, this is the first attempt at using NFV in an ICS context for network security.
Keeping Internet users safe from attacks and other threats is one of the biggest security challenges nowadays. Distributed Denial of Service (DDoS) [1] is one of the most common attacks. DDoS makes the system stop working by resource overload. Software Define Networking (SDN) [2] has recently emerged as a new networking technology offering an unprecedented programmability that allows network operators to dynamically configure and manage their infrastructures. The flexible processing and centralized management of SDN controller allow flexibly deploying complex security algorithms and mitigation methods. In this paper, we propose a new TCP-SYN flood attack mitigation in SDN networks using machine learning. By using a testbed, we implement the proposed algorithms, evaluate their accuracy and address the trade-off between the accuracy and capacity of the security device. The results show that the algorithms can mitigate TCP-SYN Flood attack over 96.
In today's time Software Defined Network (SDN) gives the complete control to get the data flow in the network. SDN works as a central point to which data is administered centrally and traffic is also managed. SDN being open source product is more prone to security threats. The security policies are also to be enforced as it would otherwise let the controller be attacked the most. The attacks like DDOS and DOS attacks are more commonly found in SDN controller. DDOS is destructive attack that normally diverts the normal flow of traffic and starts the over flow of flooded packets halting the system. Machine Learning techniques helps to identify the hidden and unexpected pattern of the network and hence helps in analyzing the network flow. All the classified and unclassified techniques can help detect the malicious flow based on certain parameters like packet flow, time duration, accuracy and precision rate. Researchers have used Bayesian Network, Wavelets, Support Vector Machine and KNN to detect DDOS attacks. As per the review it's been analyzed that KNN produces better result as per the higher precision and giving a lower falser rate for detection. This paper produces better approach of hybrid Machine Learning techniques rather than existing KNN on the same data set giving more accuracy of detecting DDOS attacks on higher precision rate. The result of the traffic with both normal and abnormal behavior is shown and as per the result the proposed algorithm is designed which is suited for giving better approach than KNN and will be implemented later on for future.
The growing trend toward information technology increases the amount of data travelling over the network links. The problem of detecting anomalies in data streams has increased with the growth of internet connectivity. Software-Defined Networking (SDN) is a new concept of computer networking that can adapt and support these growing trends. However, the centralized nature of the SDN design is challenged by the need for an efficient method for traffic monitoring against traffic anomalies caused by misconfigured devices or ongoing attacks. In this paper, we propose a new model for traffic behavior monitoring that aims to ensure trusted communication links between the network devices. The main objective of this model is to confirm that the behavior of the traffic streams matches the instructions provided by the SDN controller, which can help to increase the trust between the SDN controller and its covered infrastructure components. According to our preliminary implementation, the behavior monitoring unit is able to read all traffic information and perform a validation process that reports any mismatching traffic to the controller.
Nowadays, video streaming over HTTP is one of the most dominant Internet applications, using adaptive video techniques. Network assisted approaches have been proposed and are being standardized in order to provide high QoE for the end-users of such applications. SAND is a recent MPEG standard where DASH Aware Network Elements (DANEs) are introduced for this purpose. As web-caches are one of the main components of the SAND architecture, the location and the connectivity of these web-caches plays an important role in the user's QoE. The nature of SAND and DANE provides a good foundation for software controlled virtualized DASH environments, and in this paper, we propose a cache location algorithm and a cache migration algorithm for virtualized SAND deployments. The optimal locations for the virtualized DANEs is determined by an SDN controller and migrates it based on gathered statistics. The performance of the resulting system shows that, when SDN and NFV technologies are leveraged in such systems, software controlled virtualized approaches can provide an increase in QoE.
Software Defined Network (SDN) is a revolutionary networking paradigm which provides the flexibility of programming the network interface as per the need and demand of the user. Software Defined Network (SDN) is independent of vendor specific hardware or protocols and offers the easy extensions in the networking. A customized network as per on user demand facilitates communication control via a single entity i.e. SDN controller. Due to this SDN Controller has become more vulnerable to SDN security attacks and more specifically a single point of failure. It is worth noticing that vulnerabilities were identified because of customized applications which are semi-independent of underlying network infrastructure. No doubt, SDN has provided numerous benefits like breaking vendor lock-ins, reducing overhead cost, easy innovations, increasing programmability among devices, introducing new features and so on. But security of SDN cannot be neglected and it has become a major topic of debate. The communication channel used in SDN is OpenFlow which has made TLS implementation an optional approach in SDN. TLS adoption is important and still vulnerable. This paper focuses on making SDN OpenFlow communication more secure by following extended TLS support and defensive algorithm.
Network attacks have become a growing threat to the current Internet. For the enhancement of network security and accountability, it is urgent to find the origin and identity of the adversary who misbehaves in the network. Some studies focus on embedding users' identities into IPv6 addresses, but such design cannot support the Stateless Address Autoconfiguration (SLAAC) protocol which is widely deployed nowadays. In this paper, we propose SDN-Ti, a general solution to traceback and identification for attackers in IPv6 networks based on Software Defined Network (SDN). In our proposal, the SDN switch performs a translation between the source IPv6 address of the packet and its trusted ID-encoded address generated by the SDN controller. The network administrator can effectively identify the attacker by parsing the malicious packets when the attack incident happens. Our solution not only avoids the heavy storage overhead and time synchronism problems, but also supports multiple IPv6 address assignment scenarios. What's more, SDN-Ti does not require any modification on the end device, hence can be easily deployed. We implement SDN-Ti prototype and evaluate it in a real IPv6 testbed. Experiment results show that our solution only brings very little extra performance cost, and it shows considerable performance in terms of latency, CPU consumption and packet loss compared to the normal forwarding method. The results indicate that SDN-Ti is feasible to be deployed in practice with a large number of users.
The growing interest in the smart device/home/city has resulted in increasing popularity of Internet of Things (IoT) deployment. However, due to the open and heterogeneous nature of IoT networks, there are various challenges to deploy an IoT network, among which security and scalability are the top two to be addressed. To improve the security and scalability for IoT networks, we propose a Software-Defined Virtual Private Network (SD-VPN) solution, in which each IoT application is allocated with its own overlay VPN. The VPN tunnels used in this paper are VxLAN based tunnels and we propose to use the SDN controller to push the flow table of each VPN to the related OpenvSwitch via the OpenFlow protocol. The SD-VPN solution can improve the security of an IoT network by separating the VPN traffic and utilizing service chaining. Meanwhile, it also improves the scalability by its overlay VPN nature and the VxLAN technology.
In this paper, we propose a scheme to protect the Software Defined Network(SDN) controller from Distributed Denial-of-Service(DDoS) attacks. We first predict the amount of new requests for each openflow switch periodically based on Taylor series, and the requests will then be directed to the security gateway if the prediction value is beyond the threshold. The requests that caused the dramatic decrease of entropy will be filtered out and rules will be made in security gateway by our algorithm; the rules of these requests will be sent to the controller. The controller will send the rules to each switch to make them direct the flows matching with the rules to the honey pot. The simulation shows the averages of both false positive and false negative are less than 2%.
Software Defined Networking (SDN) is a paradigm shift that changes the working principles of IP networks by separating the control logic from routers and switches, and logically centralizing it within a controller. In this architecture the control plane (controller) communicates with the data plane (switches) through a control channel using a standards-compliant protocol, that is, OpenFlow. While having a centralized controller creates an opportunity to monitor and program the entire network, as a side effect, it causes the control plane to become a single point of failure. Denial of service (DoS) attacks or even heavy control traffic conditions can easily become real threats to the proper functioning of the controller, which indirectly detriments the entire network. In this paper, we propose a solution to reduce the control traffic generated primarily during table-miss events. We utilize the buffer\_id feature of the OpenFlow protocol, which has been designed to identify individually buffered packets within a switch, reusing it to identify flows buffered as a series of packets during table-miss, which happens when there is no related rule in the switch flow tables that matches the received packet. Thus, we allow the OpenFlow switch to send only the first packet of a flow to the controller for a table-miss while buffering the rest of the packets in the switch memory until the controller responds or time out occurs. The test results show that OpenFlow traffic is significantly reduced when the proposed method is used.
In this paper, a game-theoretical solution concept is utilized to tackle the collusion attack in a SDN-based framework. In our proposed setting, the defenders (i.e., switches) are incentivized not to collude with the attackers in a repeated-game setting that utilizes a reputation system. We first illustrate our model and its components. We then use a socio-rational approach to provide a new anti-collusion solution that shows cooperation with the SDN controller is always Nash Equilibrium due to the existence of a long-term utility function in our model.
Software Defined Networking (SDN) is the new promise towards an easily configured and remotely controlled network. Based on Centralized control, SDN technology has proved its positive impact on the world of network communications from different aspects. Security in SDN, as in traditional networks, is an essential feature that every communication system should possess. In this paper, we propose an SDN security design approach, which strikes a good balance between network performance and security features. We show how such an approach can be used to prevent DDoS attacks targeting either the controller or the different hosts in the network, and how to trace back the source of the attack. The solution lies in introducing a third plane, the security plane, in addition to the data plane, which is responsible for forwarding data packets between SDN switches, and parallel to the control plane, which is responsible for rule and data exchange between the switches and the SDN controller. The security plane is designed to exchange security-related data between a third party agent on the switch and a third party software module alongside the controller. Our evaluation shows the capability of the proposed system to enforce different levels of real-time user-defined security with low overhead and minimal configuration.
The evolution of information and communication technologies has brought new challenges in managing the Internet. Software-Defined Networking (SDN) aims to provide easily configured and remotely controlled networks based on centralized control. Since SDN will be the next disruption in networking, SDN security has become a hot research topic because of its importance in communication systems. A centralized controller can become a focal point of attack, thus preventing attack in controller will be a priority. The whole network will be affected if attacker gain access to the controller. One of the attacks that affect SDN controller is DDoS attacks. This paper reviews different detection techniques that are available to prevent DDoS attacks, characteristics of these techniques and issues that may arise using these techniques.
With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.