Biblio
Android, being the most widespread mobile operating systems is increasingly becoming a target for malware. Malicious apps designed to turn mobile devices into bots that may form part of a larger botnet have become quite common, thus posing a serious threat. This calls for more effective methods to detect botnets on the Android platform. Hence, in this paper, we present a deep learning approach for Android botnet detection based on Convolutional Neural Networks (CNN). Our proposed botnet detection system is implemented as a CNN-based model that is trained on 342 static app features to distinguish between botnet apps and normal apps. The trained botnet detection model was evaluated on a set of 6,802 real applications containing 1,929 botnets from the publicly available ISCX botnet dataset. The results show that our CNN-based approach had the highest overall prediction accuracy compared to other popular machine learning classifiers. Furthermore, the performance results observed from our model were better than those reported in previous studies on machine learning based Android botnet detection.
The open-source nature of the Android OS makes it possible for manufacturers to ship custom versions of the OS along with a set of pre-installed apps, often for product differentiation. Some device vendors have recently come under scrutiny for potentially invasive private data collection practices and other potentially harmful or unwanted behavior of the preinstalled apps on their devices. Yet, the landscape of preinstalled software in Android has largely remained unexplored, particularly in terms of the security and privacy implications of such customizations. In this paper, we present the first large- scale study of pre-installed software on Android devices from more than 200 vendors. Our work relies on a large dataset of real-world Android firmware acquired worldwide using crowd-sourcing methods. This allows us to answer questions related to the stakeholders involved in the supply chain, from device manufacturers and mobile network operators to third- party organizations like advertising and tracking services, and social network platforms. Our study allows us to also uncover relationships between these actors, which seem to revolve primarily around advertising and data-driven services. Overall, the supply chain around Android's open source model lacks transparency and has facilitated potentially harmful behaviors and backdoored access to sensitive data and services without user consent or awareness. We conclude the paper with recommendations to improve transparency, attribution, and accountability in the Android ecosystem.
Enterprises round the globe have been searching for a way to securely empower AndroidTM devices for work but have spurned away from the Android platform due to ongoing fragmentation and security concerns. Discrepant vulnerabilities have been reported in Android smartphones since Android Lollipop release. Smartphones can be easily hacked by installing a malicious application, visiting an infectious browser, receiving a crafted MMS, interplaying with plug-ins, certificate forging, checksum collisions, inter-process communication (IPC) abuse and much more. To highlight this issue a manual analysis of Android vulnerabilities is performed, by using data available in National Vulnerability Database NVD and Android Vulnerability website. This paper includes the vulnerabilities that risked the dual persona support in Android 5 and above, till Dec 2017. In our security threat analysis, we have identified a comprehensive list of Android vulnerabilities, vulnerable Android versions, manufacturers, and information regarding complete and partial patches released. So far, there is no published research work that systematically presents all the vulnerabilities and vulnerability assessment for dual persona feature of Android's smartphone. The data provided in this paper will open ways to future research and present a better Android security model for dual persona.
The rapid growth of Android malware apps poses a great security threat to users thus it is very important and urgent to detect Android malware effectively. What's more, the increasing unknown malware and evasion technique also call for novel detection method. In this paper, we focus on API feature and develop a novel method to detect Android malware. First, we propose a novel selection method for API feature related with the malware class. However, such API also has a legitimate use in benign app thus causing FP problem (misclassify benign as malware). Second, we further explore structure relationships between these APIs and map to a matrix interpreted as the hand-refined API-based feature graph. Third, a CNN-based classifier is developed for the API-based feature graph classification. Evaluations of a real-world dataset containing 3,697 malware apps and 3,312 benign apps demonstrate that selected API feature is effective for Android malware classification, just top 20 APIs can achieve high F1 of 94.3% under Random Forest classifier. When the available API features are few, classification performance including FPR indicator can achieve effective improvement effectively by complementing our further work.
With the rapid development of the mobile Internet, Android has been the most popular mobile operating system. Due to the open nature of Android, c countless malicious applications are hidden in a large number of benign applications, which pose great threats to users. Most previous malware detection approaches mainly rely on features such as permissions, API calls, and opcode sequences. However, these approaches fail to capture structural semantics of applications. In this paper, we propose AMDroid that leverages function call graphs (FCGs) representing the behaviors of applications and applies graph kernels to automatically learn the structural semantics of applications from FCGs. We evaluate AMDroid on the Genome Project, and the experimental results show that AMDroid is effective to detect Android malware with 97.49% detection accuracy.
Malware scanning of an app market is expected to be scalable and effective. However, existing approaches use either syntax-based features which can be evaded by transformation attacks or semantic-based features which are usually extracted by performing expensive program analysis. Therefor, in this paper, we propose a lightweight graph-based approach to perform Android malware detection. Instead of traditional heavyweight static analysis, we treat function call graphs of apps as social networks and perform social-network-based centrality analysis to represent the semantic features of the graphs. Our key insight is that centrality provides a succinct and fault-tolerant representation of graph semantics, especially for graphs with certain amount of inaccurate information (e.g., inaccurate call graphs). We implement a prototype system, MalScan, and evaluate it on datasets of 15,285 benign samples and 15,430 malicious samples. Experimental results show that MalScan is capable of detecting Android malware with up to 98% accuracy under one second which is more than 100 times faster than two state-of-the-art approaches, namely MaMaDroid and Drebin. We also demonstrate the feasibility of MalScan on market-wide malware scanning by performing a statistical study on over 3 million apps. Finally, in a corpus of dataset collected from Google-Play app market, MalScan is able to identify 18 zero-day malware including malware samples that can evade detection of existing tools.
Android malware family classification is an advanced task in Android malware analysis, detection and forensics. Existing methods and models have achieved a certain success for Android malware detection, but the accuracy and the efficiency are still not up to the expectation, especially in the context of multiple class classification with imbalanced training data. To address those challenges, we propose an Android malware family classification model by analyzing the code's specific semantic information based on sensitive opcode sequence. In this work, we construct a sensitive semantic feature-sensitive opcode sequence using opcodes, sensitive APIs, STRs and actions, and propose to analyze the code's specific semantic information, generate a semantic related vector for Android malware family classification based on this feature. Besides, aiming at the families with minority, we adopt an oversampling technique based on the sensitive opcode sequence. Finally, we evaluate our method on Drebin dataset, and select the top 40 malware families for experiments. The experimental results show that the Total Accuracy and Average AUC (Area Under Curve, AUC) reach 99.50% and 98.86% with 45. 17s per Android malware, and even if the number of malware families increases, these results remain good.
Security is often a critical problem in software systems. The consequences of the failure lead to substantial economic loss or extensive environmental damage. Developing secure software is challenging, and retrofitting existing systems to introduce security is even harder. In this paper, we propose an automated approach for Finding and Repairing Bugs based on security patterns (FireBugs), to repair defects causing security vulnerabilities. To locate and fix security bugs, we apply security patterns that are reusable solutions comprising large amounts of software design experience in many different situations. In the evaluation, we investigated 2,800 Android app repositories to apply our approach to 200 subject projects that use javax.crypto APIs. The vision of our automated approach is to reduce software maintenance burdens where the number of outstanding software defects exceeds available resources. Our ultimate vision is to design more security patterns that have a positive impact on software quality by disseminating correlated sets of best security design practices and knowledge.
The paper is devoted to the comparison of performance of prospective lightweight block cipher Cypress with performances of the known modern lightweight block ciphers such as AES, SPECK, SPARX etc. The measurement was done on different platforms: Windows, Linux and Android. On all platforms selected, the block cipher Cypress showed the best results. The block cipher Cypress-256 showed the highest performance on Windows x32 (almost 3.5 Gbps), 64-bit Linux (over 8 Gbps) and Android (1.3 Gbps). On Windows x64 the best result was obtained by Cypress- 512 (almost 5 Gbps).
The growing use of smart phones has also given opportunity to the intruders to create malicious apps thereby the security and privacy concerns of a novice user has also grown. This research focuses on the privacy concerns of a user who unknowingly installs a malicious apps created by the programmer. In this paper we created an attack scenario and created an app capable of compromising the privacy of the users. After accepting all the permissions by the user while installing the app, the app allows us to track the live location of the Android device and continuously sends the GPS coordinates to the server. This spying app is also capable of sending the call log details of the user. This paper evaluates two leading smart phone operating systems- Android and IOS to find out the flexibility provided by the two operating systems to their programmers to create the malicious apps.