Visible to the public Biblio

Filters: Keyword is cyber attack  [Clear All Filters]
2023-06-22
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

2023-06-09
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
2023-04-14
Faircloth, Christopher, Hartzell, Gavin, Callahan, Nathan, Bhunia, Suman.  2022.  A Study on Brute Force Attack on T-Mobile Leading to SIM-Hijacking and Identity-Theft. 2022 IEEE World AI IoT Congress (AIIoT). :501–507.
The 2021 T-Mobile breach conducted by John Erin Binns resulted in the theft of 54 million customers' personal data. The attacker gained entry into T-Mobile's systems through an unprotected router and used brute force techniques to access the sensitive information stored on the internal servers. The data stolen included names, addresses, Social Security Numbers, birthdays, driver's license numbers, ID information, IMEIs, and IMSIs. We analyze the data breach and how it opens the door to identity theft and many other forms of hacking such as SIM Hijacking. SIM Hijacking is a form of hacking in which bad actors can take control of a victim's phone number allowing them means to bypass additional safety measures currently in place to prevent fraud. This paper thoroughly reviews the attack methodology, impact, and attempts to provide an understanding of important measures and possible defense solutions against future attacks. We also detail other social engineering attacks that can be incurred from releasing the leaked data.
2023-01-13
Y, Justindhas., Kumar, G. Anil, Chandrashekhar, A, Raman, R Raghu, Kumar, A. Ravi, S, Ashwini.  2022.  Internet of Things based Data Security Management using Three Level Cyber Security Policies. 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). :1–8.
The Internet of Things devices is rapidly becoming widespread, as are IoT services. Their achievement has not gone unnoticed, as threats as well as attacks towards IoT devices as well as services continue to grow. Cyber attacks are not unique to IoT, however as IoT becomes more ingrained in our lives as well as communities, it is imperative to step up as well as take cyber defense seriously. As a result, there is a genuine need to protect IoT, which necessitates a thorough understanding of the dangers and attacks against IoT infrastructure. The purpose of this study is to define threat types, as well as to assess and characterize intrusions and assaults against IoT devices as well as services
2022-07-29
Gallus, Petr, Frantis, Petr.  2021.  Security analysis of the Raspbian Linux operating system and its settings to increase resilience against attacks via network interface. 2021 International Conference on Military Technologies (ICMT). :1—5.

The Internet, originally an academic network for the rapid exchange of information, has moved over time into the commercial media, business and later industrial communications environment. Recently, it has been included as a part of cyberspace as a combat domain. Any device connected to the unprotected Internet is thus exposed to possible attacks by various groups and individuals pursuing various criminal, security and political objectives. Therefore, each such device must be set up to be as resistant as possible to these attacks. For the implementation of small home, academic or industrial systems, people very often use small computing system Raspberry PI, which is usually equipped with the operating system Raspbian Linux. Such a device is often connected to an unprotected Internet environment and if successfully attacked, can act as a gateway for an attacker to enter the internal network of an organization or home. This paper deals with security configuration of Raspbian Linux operating system for operation on public IP addresses in an unprotected Internet environment. The content of this paper is the conduction and analysis of an experiment in which five Raspbian Linux/Raspberry PI accounts were created with varying security levels; the easiest to attack is a simulation of the device of a user who has left the system without additional security. The accounts that follow gradually add further protection and security. These accounts are used to simulate a variety of experienced users, and in a practical experiment the effects of these security measures are evaluated; such as the number of successful / unsuccessful attacks; where the attacks are from; the type and intensity of the attacks; and the target of the attack. The results of this experiment lead to formulated conclusions containing an analysis of the attack and subsequent design recommendations and settings to secure such a device. The subsequent section of the paper discusses the implementation of a simple TCP server that is configured to listen to incoming traffic on preset ports; it simulates the behaviour of selected services on these ports. This server's task is to intercept unauthorized connection attempts to these ports and intercepting attempts to communicate or attack these services. These recorded attack attempts are analyzed in detail and formulated in the conclusion, including implications for the security settings of such a device. The overall result of this paper is the recommended set up of operating system Raspbian Linux to work on public IP addresses in an unfiltered Internet environment.

2022-06-09
Başer, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique: Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called’ zero-day attacks’ can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker’s behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2022-04-20
Nguyen, Tien, Wang, Shiyuan, Alhazmi, Mohannad, Nazemi, Mostafa, Estebsari, Abouzar, Dehghanian, Payman.  2020.  Electric Power Grid Resilience to Cyber Adversaries: State of the Art. IEEE Access. 8:87592–87608.
The smart electricity grids have been evolving to a more complex cyber-physical ecosystem of infrastructures with integrated communication networks, new carbon-free sources of power generation, advanced monitoring and control systems, and a myriad of emerging modern physical hardware technologies. With the unprecedented complexity and heterogeneity in dynamic smart grid networks comes additional vulnerability to emerging threats such as cyber attacks. Rapid development and deployment of advanced network monitoring and communication systems on one hand, and the growing interdependence of the electric power grids to a multitude of lifeline critical infrastructures on the other, calls for holistic defense strategies to safeguard the power grids against cyber adversaries. In order to improve the resilience of the power grid against adversarial attacks and cyber intrusions, advancements should be sought on detection techniques, protection plans, and mitigation practices in all electricity generation, transmission, and distribution sectors. This survey discusses such major directions and recent advancements from a lens of different detection techniques, equipment protection plans, and mitigation strategies to enhance the energy delivery infrastructure resilience and operational endurance against cyber attacks. This undertaking is essential since even modest improvements in resilience of the power grid against cyber threats could lead to sizeable monetary savings and an enriched overall social welfare.
Conference Name: IEEE Access
2022-04-19
A, Meharaj Begum, Arock, Michael.  2021.  Efficient Detection Of SQL Injection Attack(SQLIA) Using Pattern-based Neural Network Model. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :343–347.
Web application vulnerability is one of the major causes of cyber attacks. Cyber criminals exploit these vulnerabilities to inject malicious commands to the unsanitized user input in order to bypass authentication of the database through some cyber-attack techniques like cross site scripting (XSS), phishing, Structured Query Language Injection Attack (SQLIA), malware etc., Although many research works have been conducted to resolve the above mentioned attacks, only few challenges with respect to SQLIA could be resolved. Ensuring security against complete set of malicious payloads are extremely complicated and demanding. It requires appropriate classification of legitimate and injected SQL commands. The existing approaches dealt with limited set of signatures, keywords and symbols of SQL queries to identify the injected queries. This work focuses on extracting SQL injection patterns with the help of existing parsing and tagging techniques. Pattern-based tags are trained and modeled using Multi-layer Perceptron which significantly performs well in classification of queries with accuracy of 94.4% which is better than the existing approaches.
2022-04-18
Sun, Chuang, Shen, Sujin.  2021.  An Improved Byzantine Consensus Based Multi-Signature Algorithm. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE). :777–780.
Traditional grid-centric data storage methods are vulnerable to network attacks or failures due to downtime, causing problems such as data loss or tampering. The security of data storage can be effectively improved by establishing an alliance chain. However, the existing consortium chain consensus algorithm has low scalability, and the consensus time will explode as the number of nodes increases. This paper proposes an improved consensus algorithm (MSBFT) based on multi-signature to address this problem, which spreads data by establishing a system communication tree, reducing communication and network transmission costs, and improving system scalability. By generating schnorr multi-signature as the shared signature of system nodes, the computational cost of verification between nodes is reduced. At the end of the article, simulations prove the superiority of the proposed method.
2022-04-13
Kovalchuk, Olha, Shynkaryk, Mykola, Masonkova, Mariia.  2021.  Econometric Models for Estimating the Financial Effect of Cybercrimes. 2021 11th International Conference on Advanced Computer Information Technologies (ACIT). :381–384.
Technological progress has changed our world beyond recognition. However, along with the incredible benefits and conveniences we have received new dangers and risks. Mankind is increasingly becoming hostage to information technology and cyber world. Recently, cybercrime is one of the top 10 risks to sustainable development in the world. It poses serious new challenges to global security and economy. The aim of the article is to obtain an assessment of some of the financial effects of modern IT crimes based on an analysis of the main aspects of monetary costs and the hidden economic impact of cybercrime. A multifactor regression model has been proposed to determine the contribution of the cost of the main consequences of IT incidents: business disruption, information loss, revenue loss and equipment damage caused by different types of cyberattacks worldwide in 2019 to total cost of cyberattacks. Information loss has been found to have a major impact on the total cost of cyberattacks, reducing profits and incurring additional costs for businesses. It was built a canonical model for identifying the dependence of total submission to ID ransomware, total cost of cybercrime and the main indicators of economic development for the TOP-10 countries. There is a significant correlation between two sets of indicators, in particular, it is confirmed that most cyberattacks target countries - countries with a high level of development, and the consequences of IT crimes are more significant for low-income countries.
2022-03-23
Jena, Prasanta Kumar, Ghosh, Subhojit, Koley, Ebha.  2021.  An Optimal PMU Placement Scheme for Detection of Malicious Attacks in Smart Grid. 2021 4th Biennial International Conference on Nascent Technologies in Engineering (ICNTE). :1—6.

State estimation is the core operation performed within the energy management system (EMS) of smart grid. Hence, the reliability and integrity of a smart grid relies heavily on the performance of sensor measurement dependent state estimation process. The increasing penetration of cyber control into the smart grid operations has raised severe concern for executing a secured state estimation process. The limitation with regard to monitoring large number of sensors allows an intruder to manipulate sensor information, as one of the soft targets for disrupting power system operations. Phasor measurement unit (PMU) can be adopted as an alternative to immunize the state estimation from corrupted conventional sensor measurements. However, the high installation cost of PMUs restricts its installation throughout the network. In this paper a graphical approach is proposed to identify minimum PMU placement locations, so as to detect any intrusion of malicious activity within the smart grid. The high speed synchronized PMU information ensures processing of secured set of sensor measurements to the control center. The results of PMU information based linear state estimation is compared with the conventional non-linear state estimation to detect any attack within the system. The effectiveness of the proposed scheme has been validated on IEEE 14 bus test system.

2022-01-10
Goncharov, V. V., Goncharov, A. V., Shavrin, S. S., Shishova, N. A..  2021.  The Cyber Attack on the Corporate Network Models Theoretical Aspects. 2021 Systems of Signals Generating and Processing in the Field of on Board Communications. :1–4.
Mathematical model of web server protection is being proposed based on filtering HTTP (Hypertext Transfer Protocol) packets that do not match the semantic parameters of the request standards of this protocol. The model is defined as a graph, and the relationship between the parameters - the sets of vulnerabilities of the corporate network, the methods of attacks and their consequences-is described by the Cartesian product, which provides the correct interpretation of a corporate network cyber attack. To represent the individual stages of simulated attacks, it is possible to separate graph models in order to model more complex attacks based on the existing simplest ones. The unity of the model proposed representation of cyber attack in three variants is shown, namely: graphic, text and formula.
2021-12-21
Ba\c ser, Melike, Güven, Ebu Yusuf, Aydın, Muhammed Ali.  2021.  SSH and Telnet Protocols Attack Analysis Using Honeypot Technique : *Analysis of SSH AND ℡NET Honeypot. 2021 6th International Conference on Computer Science and Engineering (UBMK). :806–811.
Generally, the defense measures taken against new cyber-attack methods are insufficient for cybersecurity risk management. Contrary to classical attack methods, the existence of undiscovered attack types called' zero-day attacks' can invalidate the actions taken. It is possible with honeypot systems to implement new security measures by recording the attacker's behavior. The purpose of the honeypot is to learn about the methods and tools used by the attacker or malicious activity. In particular, it allows us to discover zero-day attack types and develop new defense methods for them. Attackers have made protocols such as SSH (Secure Shell) and Telnet, which are widely used for remote access to devices, primary targets. In this study, SSHTelnet honeypot was established using Cowrie software. Attackers attempted to connect, and attackers record their activity after providing access. These collected attacker log records and files uploaded to the system are published on Github to other researchers1. We shared the observations and analysis results of attacks on SSH and Telnet protocols with honeypot.
2021-03-04
Jeong, J. H., Choi, S. G..  2020.  Hybrid System to Minimize Damage by Zero-Day Attack based on NIDPS and HoneyPot. 2020 International Conference on Information and Communication Technology Convergence (ICTC). :1650—1652.

This paper presents hybrid system to minimize damage by zero-day attack. Proposed system consists of signature-based NIDPS, honeypot and temporary queue. When proposed system receives packet from external network, packet which is known for attack packet is dropped by signature-based NIDPS. Passed packets are redirected to honeypot, because proposed system assumes that all packets which pass NIDPS have possibility of zero-day attack. Redirected packet is stored in temporary queue and if the packet has possibility of zero-day attack, honeypot extracts signature of the packet. Proposed system creates rule that match rule format of NIDPS based on extracted signatures and updates the rule. After the rule update is completed, temporary queue sends stored packet to NIDPS then packet with risk of attack can be dropped. Proposed system can reduce time to create and apply rule which can respond to unknown attack packets. Also, it can drop packets that have risk of zero-day attack in real time.

2021-02-08
Liu, S., Kosuru, R., Mugombozi, C. F..  2020.  A Moving Target Approach for Securing Secondary Frequency Control in Microgrids. 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). :1–6.
Microgrids' dependency on communication links exposes the control systems to cyber attack threats. In this work, instead of designing reactive defense approaches, a proacitve moving target defense mechanism is proposed for securing microgrid secondary frequency control from denial of service (DoS) attack. The sensor data is transmitted by following a Markov process, not in a deterministic way. This uncertainty will increase the difficulty for attacker's decision making and thus significantly reduce the attack space. As the system parameters are constantly changing, a gain scheduling based secondary frequency controller is designed to sustain the system performance. Case studies of a microgrid with four inverter-based DGs show the proposed moving target mechanism can enhance the resiliency of the microgrid control systems against DoS attacks.
2020-10-06
Jacobs, Nicholas, Hossain-McKenzie, Shamina, Vugrin, Eric.  2018.  Measurement and Analysis of Cyber Resilience for Control Systems: An Illustrative Example. 2018 Resilience Week (RWS). :38—46.

Control systems for critical infrastructure are becoming increasingly interconnected while cyber threats against critical infrastructure are becoming more sophisticated and difficult to defend against. Historically, cyber security has emphasized building defenses to prevent loss of confidentiality, integrity, and availability in digital information and systems, but in recent years cyber attacks have demonstrated that no system is impenetrable and that control system operation may be detrimentally impacted. Cyber resilience has emerged as a complementary priority that seeks to ensure that digital systems can maintain essential performance levels, even while capabilities are degraded by a cyber attack. This paper examines how cyber security and cyber resilience may be measured and quantified in a control system environment. Load Frequency Control is used as an illustrative example to demonstrate how cyber attacks may be represented within mathematical models of control systems, to demonstrate how these events may be quantitatively measured in terms of cyber security or cyber resilience, and the differences and similarities between the two mindsets. These results demonstrate how various metrics are applied, the extent of their usability, and how it is important to analyze cyber-physical systems in a comprehensive manner that accounts for all the various parts of the system.

2020-09-18
Zolanvari, Maede, Teixeira, Marcio A., Gupta, Lav, Khan, Khaled M., Jain, Raj.  2019.  Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things. IEEE Internet of Things Journal. 6:6822—6834.
It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.
Zhang, Fan, Kodituwakku, Hansaka Angel Dias Edirisinghe, Hines, J. Wesley, Coble, Jamie.  2019.  Multilayer Data-Driven Cyber-Attack Detection System for Industrial Control Systems Based on Network, System, and Process Data. IEEE Transactions on Industrial Informatics. 15:4362—4369.
The growing number of attacks against cyber-physical systems in recent years elevates the concern for cybersecurity of industrial control systems (ICSs). The current efforts of ICS cybersecurity are mainly based on firewalls, data diodes, and other methods of intrusion prevention, which may not be sufficient for growing cyber threats from motivated attackers. To enhance the cybersecurity of ICS, a cyber-attack detection system built on the concept of defense-in-depth is developed utilizing network traffic data, host system data, and measured process parameters. This attack detection system provides multiple-layer defense in order to gain the defenders precious time before unrecoverable consequences occur in the physical system. The data used for demonstrating the proposed detection system are from a real-time ICS testbed. Five attacks, including man in the middle (MITM), denial of service (DoS), data exfiltration, data tampering, and false data injection, are carried out to simulate the consequences of cyber attack and generate data for building data-driven detection models. Four classical classification models based on network data and host system data are studied, including k-nearest neighbor (KNN), decision tree, bootstrap aggregating (bagging), and random forest (RF), to provide a secondary line of defense of cyber-attack detection in the event that the intrusion prevention layer fails. Intrusion detection results suggest that KNN, bagging, and RF have low missed alarm and false alarm rates for MITM and DoS attacks, providing accurate and reliable detection of these cyber attacks. Cyber attacks that may not be detectable by monitoring network and host system data, such as command tampering and false data injection attacks by an insider, are monitored for by traditional process monitoring protocols. In the proposed detection system, an auto-associative kernel regression model is studied to strengthen early attack detection. The result shows that this approach detects physically impactful cyber attacks before significant consequences occur. The proposed multiple-layer data-driven cyber-attack detection system utilizing network, system, and process data is a promising solution for safeguarding an ICS.
2020-09-14
Kim, Seungmin, Kim, Sangwoo, Nam, Ki-haeng, Kim, Seonuk, Kwon, Kook-huei.  2019.  Cyber Security Strategy for Nuclear Power Plant through Vital Digital Assets. 2019 International Conference on Computational Science and Computational Intelligence (CSCI). :224–226.
As nuclear power plant Instrumentation and Control(I&C) systems have turned into digital systems, the possibility of cyber-attacks has increased. To protect the nuclear power plant from cyber-attacks, digital assets are classified and managed as critical digital assets which have safety, security and emergency preparedness functions. However, critical digital assets represent 70-80% of total digital assets, and applying and managing the same security control is inefficient. Therefore, this paper presents the criteria for identifying digital assets that are classified as vital digital assets that can directly affect the serious accidents of nuclear power plants.
2020-08-28
Avellaneda, Florent, Alikacem, El-Hackemi, Jaafar, Femi.  2019.  Using Attack Pattern for Cyber Attack Attribution. 2019 International Conference on Cybersecurity (ICoCSec). :1—6.

A cyber attack is a malicious and deliberate attempt by an individual or organization to breach the integrity, confidentiality, and/or availability of data or services of an information system of another individual or organization. Being able to attribute a cyber attack is a crucial question for security but this question is also known to be a difficult problem. The main reason why there is currently no solution that automatically identifies the initiator of an attack is that attackers usually use proxies, i.e. an intermediate node that relays a host over the network. In this paper, we propose to formalize the problem of identifying the initiator of a cyber attack. We show that if the attack scenario used by the attacker is known, then we are able to resolve the cyber attribution problem. Indeed, we propose a model to formalize these attack scenarios, that we call attack patterns, and give an efficient algorithm to search for attack pattern on a communication history. Finally, we experimentally show the relevance of our approach.

2020-08-07
Chandel, Sonali, Yan, Mengdi, Chen, Shaojun, Jiang, Huan, Ni, Tian-Yi.  2019.  Threat Intelligence Sharing Community: A Countermeasure Against Advanced Persistent Threat. 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). :353—359.
Advanced Persistent Threat (APT) having focused target along with advanced and persistent attacking skills under great concealment is a new trend followed for cyber-attacks. Threat intelligence helps in detecting and preventing APT by collecting a host of data and analyzing malicious behavior through efficient data sharing and guaranteeing the safety and quality of information exchange. For better protection, controlled access to intelligence information and a grading standard to revise the criteria in diagnosis for a security breach is needed. This paper analyses a threat intelligence sharing community model and proposes an improvement to increase the efficiency of sharing by rethinking the size and composition of a sharing community. Based on various external environment variables, it filters the low-quality shared intelligence by grading the trust level of a community member and the quality of a piece of intelligence. We hope that this research can fill in some security gaps to help organizations make a better decision in handling the ever-increasing and continually changing cyber-attacks.
2020-07-10
Javed Butt, Usman, Abbod, Maysam, Lors, Anzor, Jahankhani, Hamid, Jamal, Arshad, Kumar, Arvind.  2019.  Ransomware Threat and its Impact on SCADA. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :205—212.
Modern cybercrimes have exponentially grown over the last one decade. Ransomware is one of the types of malware which is the result of sophisticated attempt to compromise the modern computer systems. The governments and large corporations are investing heavily to combat this cyber threat against their critical infrastructure. It has been observed that over the last few years that Industrial Control Systems (ICS) have become the main target of Ransomware due to the sensitive operations involved in the day to day processes of these industries. As the technology is evolving, more and more traditional industrial systems are replaced with advanced industry methods involving advanced technologies such as Internet of Things (IoT). These technology shift help improve business productivity and keep the company's global competitive in an overflowing competitive market. However, the systems involved need secure measures to protect integrity and availability which will help avoid any malfunctioning to their operations due to the cyber-attacks. There have been several cyber-attack incidents on healthcare, pharmaceutical, water cleaning and energy sector. These ICS' s are operated by remote control facilities and variety of other devices such as programmable logic controllers (PLC) and sensors to make a network. Cyber criminals are exploring vulnerabilities in the design of these ICS's to take the command and control of these systems and disrupt daily operations until ransomware is paid. This paper will provide critical analysis of the impact of Ransomware threat on SCADA systems.
2020-04-10
Huang, Yongjie, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection Via Capsule-Based Neural Network. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :22—26.

As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.

2020-03-09
Hasnat, Md Abul, Rahnamay-Naeini, Mahshid.  2019.  A Data-Driven Dynamic State Estimation for Smart Grids under DoS Attack using State Correlations. 2019 North American Power Symposium (NAPS). :1–6.
The denial-of-service (DoS) attack is a very common type of cyber attack that can affect critical cyber-physical systems, such as smart grids, by hampering the monitoring and control of the system, for example, creating unavailability of data from the attacked zone. While developing countermeasures can help reduce such risks, it is essential to develop techniques to recover from such scenarios if they occur by estimating the state of the system. Considering the continuous data-stream from the PMUs as time series, this work exploits the bus-to-bus cross-correlations to estimate the state of the system's components under attack using the PMU data of the rest of the buses. By applying this technique, the state of the power system can be estimated under various DoS attack sizes with great accuracy. The estimation accuracy in terms of the mean squared error (MSE) has been used to identify the relative vulnerability of the PMUs of the grid and the most vulnerable time for the DoS attack.
2020-02-17
Shukla, Meha, Johnson, Shane D., Jones, Peter.  2019.  Does the NIS implementation strategy effectively address cyber security risks in the UK? 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1–11.
This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors.