Visible to the public Biblio

Filters: Keyword is cyber attack  [Clear All Filters]
2020-02-17
Kumar, Sanjeev, Kumar, Harsh, Gunnam, Ganesh Reddy.  2019.  Security Integrity of Data Collection from Smart Electric Meter under a Cyber Attack. 2019 2nd International Conference on Data Intelligence and Security (ICDIS). :9–13.
Cyber security has been a top concern for electric power companies deploying smart meters and smart grid technology. Despite the well-known advantages of smart grid technology and the smart meters, it is not yet very clear how and to what extent, the Cyber attacks can hamper the operation of the smart meters, and remote data collections regarding the power usage from the customer sites. To understand these questions, we conducted experiments in a controlled lab environment of our cyber security lab to test a commercial grade smart meter. In this paper, we present results of our investigation for a commercial grade smart meter and measure the operation integrity of the smart meter under cyber-attack conditions.
2020-01-13
Ivkic, Igor, Mauthe, Andreas, Tauber, Markus.  2019.  Towards a Security Cost Model for Cyber-Physical Systems. 2019 16th IEEE Annual Consumer Communications Networking Conference (CCNC). :1–7.
In times of Industry 4.0 and cyber-physical systems (CPS) providing security is one of the biggest challenges. A cyber attack launched at a CPS poses a huge threat, since a security incident may affect both the cyber and the physical world. Since CPS are very flexible systems, which are capable of adapting to environmental changes, it is important to keep an overview of the resulting costs of providing security. However, research regarding CPS currently focuses more on engineering secure systems and does not satisfactorily provide approaches for evaluating the resulting costs. This paper presents an interaction-based model for evaluating security costs in a CPS. Furthermore, the paper demonstrates in a use case driven study, how this approach could be used to model the resulting costs for guaranteeing security.
2019-12-18
Zadig, Sean M., Tejay, Gurvirender.  2010.  Securing IS assets through hacker deterrence: A case study. 2010 eCrime Researchers Summit. :1–7.
Computer crime is a topic prevalent in both the research literature and in industry, due to a number of recent high-profile cyber attacks on e-commerce organizations. While technical means for defending against internal and external hackers have been discussed at great length, researchers have shown a distinct preference towards understanding deterrence of the internal threat and have paid little attention to external deterrence. This paper uses the criminological thesis known as Broken Windows Theory to understand how external computer criminals might be deterred from attacking a particular organization. The theory's focus upon disorder as a precursor to crime is discussed, and the notion of decreasing public IS disorder to create the illusion of strong information systems security is examined. A case study of a victim e-commerce organization is reviewed in light of the theory and implications for research and practice are discussed.
2019-12-02
Ibarra, Jaime, Javed Butt, Usman, Do, Anh, Jahankhani, Hamid, Jamal, Arshad.  2019.  Ransomware Impact to SCADA Systems and its Scope to Critical Infrastructure. 2019 IEEE 12th International Conference on Global Security, Safety and Sustainability (ICGS3). :1–12.
SCADA systems are being constantly migrated to modern information and communication technologies (ICT) -based systems named cyber-physical systems. Unfortunately, this allows attackers to execute exploitation techniques into these architectures. In addition, ransomware insertion is nowadays the most popular attacking vector because it denies the availability of critical files and systems until attackers receive the demanded ransom. In this paper, it is analysed the risk impact of ransomware insertion into SCADA systems and it is suggested countermeasures addressed to the protection of SCADA systems and its components to reduce the impact of ransomware insertion.
2019-11-26
Baykara, Muhammet, Gürel, Zahit Ziya.  2018.  Detection of Phishing Attacks. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1-5.

Phishing is a form of cybercrime where an attacker imitates a real person / institution by promoting them as an official person or entity through e-mail or other communication mediums. In this type of cyber attack, the attacker sends malicious links or attachments through phishing e-mails that can perform various functions, including capturing the login credentials or account information of the victim. These e-mails harm victims because of money loss and identity theft. In this study, a software called "Anti Phishing Simulator'' was developed, giving information about the detection problem of phishing and how to detect phishing emails. With this software, phishing and spam mails are detected by examining mail contents. Classification of spam words added to the database by Bayesian algorithm is provided.

2019-11-19
Fei, Jiaxuan, Shi, Congcong, Yuan, Xuechong, Zhang, Rui, Chen, Wei, Yang, Yi.  2019.  Reserch on Cyber Attack of Key Measurement and Control Equipment in Power Grid. 2019 IEEE International Conference on Energy Internet (ICEI). :31-36.

The normal operation of key measurement and control equipment in power grid (KMCEPG) is of great significance for safe and stable operation of power grid. Firstly, this paper gives a systematic overview of KMCEPG. Secondly, the cyber security risks of KMCEPG on the main station / sub-station side, channel side and terminal side are analyzed and the related vulnerabilities are discovered. Thirdly, according to the risk analysis results, the attack process construction technology of KMCEPG is proposed, which provides the test process and attack ideas for the subsequent KMCEPG-related attack penetration. Fourthly, the simulation penetration test environment is built, and a series of attack tests are carried out on the terminal key control equipment by using the attack flow construction technology proposed in this paper. The correctness of the risk analysis and the effectiveness of the attack process construction technology are verified. Finally, the attack test results are analyzed, and the attack test cases of terminal critical control devices are constructed, which provide the basis for the subsequent attack test. The attack flow construction technology and attack test cases proposed in this paper improve the network security defense capability of key equipment of power grid, ensure the safe and stable operation of power grid, and have strong engineering application value.

2019-09-05
Qiu, Yanbin, Liu, Yanhua, Li, Shijin.  2018.  A Method of Cyber Risk Control Node Selection Based on Game Theory. Proceedings of the 8th International Conference on Communication and Network Security. :32-36.

For the occurrence of network attacks, the most important thing for network security managers is how to conduct attack security defenses under low-risk control. And in the attack risk control, the first and most important step is to choose the defense node of risk control. In this paper, aiming to solve the problem of network attack security risk control under complex networks, we propose a game attack risk control node selection method based on game theory. The method utilizes the relationship between the vulnerabilities and analyzes the vulnerability intent information of the complex network to construct an attack risk diffusion network. In order to truly reflect the different meanings of each node in the attack risk diffusion network for attack and defense, this paper uses the host vulnerability attack and defense income evaluation calculation to give each node in the network its offensive and defensive income. According to the above-mentioned attack risk spread network of offensive and defensive gains, this paper combines game theory and maximum benefit ideas to select the best Top defense node information. In this paper, The method proposed in this paper can be used to select network security risk control nodes on complex networks, which can help network security managers to play a good auxiliary role in cyber attack defense.

2019-02-22
Guo, Y., Gong, Y., Njilla, L. L., Kamhoua, C. A..  2018.  A Stochastic Game Approach to Cyber-Physical Security with Applications to Smart Grid. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :33-38.
This paper proposes a game-theoretic approach to analyze the interactions between an attacker and a defender in a cyber-physical system (CPS) and develops effective defense strategies. In a CPS, the attacker launches cyber attacks on a number of nodes in the cyber layer, trying to maximize the potential damage to the underlying physical system while the system operator seeks to defend several nodes in the cyber layer to minimize the physical damage. Given that CPS attacking and defending is often a continual process, a zero-sum Markov game is proposed in this paper to model these interactions subject to underlying uncertainties of real-world events and actions. A novel model is also proposed in this paper to characterize the interdependence between the cyber layer and the physical layer in a CPS and quantify the impact of the cyber attack on the physical damage in the proposed game. To find the Nash equilibrium of the Markov game, we design an efficient algorithm based on value iteration. The proposed general approach is then applied to study the wide-area monitoring and protection issue in smart grid. Extensive simulations are conducted based on real-world data, and results show the effectiveness of the defending strategies derived from the proposed approach.
2019-01-21
Nicolaou, N., Eliades, D. G., Panayiotou, C., Polycarpou, M. M..  2018.  Reducing Vulnerability to Cyber-Physical Attacks in Water Distribution Networks. 2018 International Workshop on Cyber-physical Systems for Smart Water Networks (CySWater). :16–19.

Cyber-Physical Systems (CPS), such as Water Distribution Networks (WDNs), deploy digital devices to monitor and control the behavior of physical processes. These digital devices, however, are susceptible to cyber and physical attacks, that may alter their functionality, and therefore the integrity of their measurements/actions. In practice, industrial control systems utilize simple control laws, which rely on various sensor measurements and algorithms which are expected to operate normally. To reduce the impact of a potential failure, operators may deploy redundant components; this however may not be useful, e.g., when a cyber attack at a PLC component occurs. In this work, we address the problem of reducing vulnerability to cyber-physical attacks in water distribution networks. This is achieved by augmenting the graph which describes the information flow from sensors to actuators, by adding new connections and algorithms, to increase the number of redundant cyber components. These, in turn, increase the \textitcyber-physical security level, which is defined in the present paper as the number of malicious attacks a CPS may sustain before becoming unable to satisfy the control requirements. A proof-of-concept of the approach is demonstrated over a simple WDN, with intuition on how this can be used to increase the cyber-physical security level of the system.

2017-11-27
Settanni, G., Shovgenya, Y., Skopik, F., Graf, R., Wurzenberger, M., Fiedler, R..  2016.  Correlating cyber incident information to establish situational awareness in Critical Infrastructures. 2016 14th Annual Conference on Privacy, Security and Trust (PST). :78–81.

Protecting Critical Infrastructures (CIs) against contemporary cyber attacks has become a crucial as well as complex task. Modern attack campaigns, such as Advanced Persistent Threats (APTs), leverage weaknesses in the organization's business processes and exploit vulnerabilities of several systems to hit their target. Although their life-cycle can last for months, these campaigns typically go undetected until they achieve their goal. They usually aim at performing data exfiltration, cause service disruptions and can also undermine the safety of humans. Novel detection techniques and incident handling approaches are therefore required, to effectively protect CI's networks and timely react to this type of threats. Correlating large amounts of data, collected from a multitude of relevant sources, is necessary and sometimes required by national authorities to establish cyber situational awareness, and allow to promptly adopt suitable countermeasures in case of an attack. In this paper we propose three novel methods for security information correlation designed to discover relevant insights and support the establishment of cyber situational awareness.

2017-09-19
Kumar, Vimal, Kumar, Satish, Gupta, Avadhesh Kumar.  2016.  Real-time Detection of Botnet Behavior in Cloud Using Domain Generation Algorithm. Proceedings of the International Conference on Advances in Information Communication Technology & Computing. :69:1–69:3.

In the last few years, the high acceptability of service computing delivered over the internet has exponentially created immense security challenges for the services providers. Cyber criminals are using advanced malware such as polymorphic botnets for participating in our everyday online activities and trying to access the desired information in terms of personal details, credit card numbers and banking credentials. Polymorphic botnet attack is one of the biggest attacks in the history of cybercrime and currently, millions of computers are infected by the botnet clients over the world. Botnet attack is an intelligent and highly coordinated distributed attack which consists of a large number of bots that generates big volumes of spamming e-mails and launching distributed denial of service (DDoS) attacks on the victim machines in a heterogeneous network environment. Therefore, it is necessary to detect the malicious bots and prevent their planned attacks in the cloud environment. A number of techniques have been developed for detecting the malicious bots in a network in the past literature. This paper recognize the ineffectiveness exhibited by the singnature based detection technique and networktraffic based detection such as NetFlow or traffic flow detection and Anomaly based detection. We proposed a real time malware detection methodology based on Domain Generation Algorithm. It increasesthe throughput in terms of early detection of malicious bots and high accuracy of identifying the suspicious behavior.

2017-03-07
Wazzan, M. A., Awadh, M. H..  2015.  Towards Improving Web Attack Detection: Highlighting the Significant Factors. 2015 5th International Conference on IT Convergence and Security (ICITCS). :1–5.

Nowadays, with the rapid development of Internet, the use of Web is increasing and the Web applications have become a substantial part of people's daily life (e.g. E-Government, E-Health and E-Learning), as they permit to seamlessly access and manage information. The main security concern for e-business is Web application security. Web applications have many vulnerabilities such as Injection, Broken Authentication and Session Management, and Cross-site scripting (XSS). Subsequently, web applications have become targets of hackers, and a lot of cyber attack began to emerge in order to block the services of these Web applications (Denial of Service Attach). Developers are not aware of these vulnerabilities and have no enough time to secure their applications. Therefore, there is a significant need to study and improve attack detection for web applications through determining the most significant factors for detection. To the best of our knowledge, there is not any research that summarizes the influent factors of detection web attacks. In this paper, the author studies state-of-the-art techniques and research related to web attack detection: the author analyses and compares different methods of web attack detections and summarizes the most important factors for Web attack detection independent of the type of vulnerabilities. At the end, the author gives recommendation to build a framework for web application protection.

2016-11-15
Phuong Cao, University of Illinois at Urbana-Champaign, Eric Badger, University of Illinois at Urbana-Champaign, Zbigniew Kalbarczyk, University of Illinois at Urbana-Champaign, Ravishankar Iyer, University of Illinois at Urbana-Champaign.  2016.  A Framework for Generation, Replay and Analysis of Real-World Attack Variants. Symposium and Bootcamp for the Science of Security (HotSoS 2016).

This paper presents a framework for (1) generating variants of known attacks, (2) replaying attack variants in an isolated environment and, (3) validating detection capabilities of attack detection techniques against the variants. Our framework facilitates reproducible security experiments. We generated 648 variants of three real-world attacks (observed at the National Center for Supercomputing Applications at the University of Illinois). Our experiment showed the value of generating attack variants by quantifying the detection capabilities of three detection methods: a signature-based detection technique, an anomaly-based detection technique, and a probabilistic graphical model-based technique.

2015-05-06
Bou-Harb, E., Debbabi, M., Assi, C..  2014.  Behavioral analytics for inferring large-scale orchestrated probing events. Computer Communications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on. :506-511.

The significant dependence on cyberspace has indeed brought new risks that often compromise, exploit and damage invaluable data and systems. Thus, the capability to proactively infer malicious activities is of paramount importance. In this context, inferring probing events, which are commonly the first stage of any cyber attack, render a promising tactic to achieve that task. We have been receiving for the past three years 12 GB of daily malicious real darknet data (i.e., Internet traffic destined to half a million routable yet unallocated IP addresses) from more than 12 countries. This paper exploits such data to propose a novel approach that aims at capturing the behavior of the probing sources in an attempt to infer their orchestration (i.e., coordination) pattern. The latter defines a recently discovered characteristic of a new phenomenon of probing events that could be ominously leveraged to cause drastic Internet-wide and enterprise impacts as precursors of various cyber attacks. To accomplish its goals, the proposed approach leverages various signal and statistical techniques, information theoretical metrics, fuzzy approaches with real malware traffic and data mining methods. The approach is validated through one use case that arguably proves that a previously analyzed orchestrated probing event from last year is indeed still active, yet operating in a stealthy, very low rate mode. We envision that the proposed approach that is tailored towards darknet data, which is frequently, abundantly and effectively used to generate cyber threat intelligence, could be used by network security analysts, emergency response teams and/or observers of cyber events to infer large-scale orchestrated probing events for early cyber attack warning and notification.
 

Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.
 

2015-05-05
Al Barghuthi, N.B., Said, H..  2014.  Ethics behind Cyber Warfare: A study of Arab citizens awareness. Ethics in Science, Technology and Engineering, 2014 IEEE International Symposium on. :1-7.

Persisting to ignore the consequences of Cyber Warfare will bring severe concerns to all people. Hackers and governments alike should understand the barriers of which their methods take them. Governments use Cyber Warfare to give them a tactical advantage over other countries, defend themselves from their enemies or to inflict damage upon their adversaries. Hackers use Cyber Warfare to gain personal information, commit crimes, or to reveal sensitive and beneficial intelligence. Although both methods can provide ethical uses, the equivalent can be said at the other end of the spectrum. Knowing and comprehending these devices will not only strengthen the ability to detect these attacks and combat against them but will also provide means to divulge despotic government plans, as the outcome of Cyber Warfare can be worse than the outcome of conventional warfare. The paper discussed the concept of ethics and reasons that led to use information technology in military war, the effects of using cyber war on civilians, the legality of the cyber war and ways of controlling the use of information technology that may be used against civilians. This research uses a survey methodology to overlook the awareness of Arab citizens towards the idea of cyber war, provide findings and evidences of ethics behind the offensive cyber warfare. Detailed strategies and approaches should be developed in this aspect. The author recommended urging the scientific and technological research centers to improve the security and develop defending systems to prevent the use of technology in military war against civilians.
 

2015-05-01
Bin Hu, Gharavi, H..  2014.  Smart Grid Mesh Network Security Using Dynamic Key Distribution With Merkle Tree 4-Way Handshaking. Smart Grid, IEEE Transactions on. 5:550-558.

Distributed mesh sensor networks provide cost-effective communications for deployment in various smart grid domains, such as home area networks (HAN), neighborhood area networks (NAN), and substation/plant-generation local area networks. This paper introduces a dynamically updating key distribution strategy to enhance mesh network security against cyber attack. The scheme has been applied to two security protocols known as simultaneous authentication of equals (SAE) and efficient mesh security association (EMSA). Since both protocols utilize 4-way handshaking, we propose a Merkle-tree based handshaking scheme, which is capable of improving the resiliency of the network in a situation where an intruder carries a denial of service attack. Finally, by developing a denial of service attack model, we can then evaluate the security of the proposed schemes against cyber attack, as well as network performance in terms of delay and overhead.

Sgouras, K.I., Birda, A.D., Labridis, D.P..  2014.  Cyber attack impact on critical Smart Grid infrastructures. Innovative Smart Grid Technologies Conference (ISGT), 2014 IEEE PES. :1-5.

Electrical Distribution Networks face new challenges by the Smart Grid deployment. The required metering infrastructures add new vulnerabilities that need to be taken into account in order to achieve Smart Grid functionalities without considerable reliability trade-off. In this paper, a qualitative assessment of the cyber attack impact on the Advanced Metering Infrastructure (AMI) is initially attempted. Attack simulations have been conducted on a realistic Grid topology. The simulated network consisted of Smart Meters, routers and utility servers. Finally, the impact of Denial-of-Service and Distributed Denial-of-Service (DoS/DDoS) attacks on distribution system reliability is discussed through a qualitative analysis of reliability indices.

2015-04-30
Kirsch, J., Goose, S., Amir, Y., Dong Wei, Skare, P..  2014.  Survivable SCADA Via Intrusion-Tolerant Replication. Smart Grid, IEEE Transactions on. 5:60-70.

Providers of critical infrastructure services strive to maintain the high availability of their SCADA systems. This paper reports on our experience designing, architecting, and evaluating the first survivable SCADA system-one that is able to ensure correct behavior with minimal performance degradation even during cyber attacks that compromise part of the system. We describe the challenges we faced when integrating modern intrusion-tolerant protocols with a conventional SCADA architecture and present the techniques we developed to overcome these challenges. The results illustrate that our survivable SCADA system not only functions correctly in the face of a cyber attack, but that it also processes in excess of 20 000 messages per second with a latency of less than 30 ms, making it suitable for even large-scale deployments managing thousands of remote terminal units.

Ormrod, D..  2014.  The Coordination of Cyber and Kinetic Deception for Operational Effect: Attacking the C4ISR Interface. Military Communications Conference (MILCOM), 2014 IEEE. :117-122.

Modern military forces are enabled by networked command and control systems, which provide an important interface between the cyber environment, electronic sensors and decision makers. However these systems are vulnerable to cyber attack. A successful cyber attack could compromise data within the system, leading to incorrect information being utilized for decisions with potentially catastrophic results on the battlefield. Degrading the utility of a system or the trust a decision maker has in their virtual display may not be the most effective means of employing offensive cyber effects. The coordination of cyber and kinetic effects is proposed as the optimal strategy for neutralizing an adversary's C4ISR advantage. However, such an approach is an opportunity cost and resource intensive. The adversary's cyber dependence can be leveraged as a means of gaining tactical and operational advantage in combat, if a military force is sufficiently trained and prepared to attack the entire information network. This paper proposes a research approach intended to broaden the understanding of the relationship between command and control systems and the human decision maker, as an interface for both cyber and kinetic deception activity.

Can, O..  2014.  Mobile agent based intrusion detection system. Signal Processing and Communications Applications Conference (SIU), 2014 22nd. :1363-1366.

An intrusion detection system (IDS) inspects all inbound and outbound network activity and identifies suspicious patterns that may indicate a network or system attack from someone attempting to break into or compromise a system. A networkbased system, or NIDS, the individual packets flowing through a network are analyzed. In a host-based system, the IDS examines at the activity on each individual computer or host. IDS techniques are divided into two categories including misuse detection and anomaly detection. In recently years, Mobile Agent based technology has been used for distributed systems with having characteristic of mobility and autonomy. In this working we aimed to combine IDS with Mobile Agent concept for more scale, effective, knowledgeable system.