Visible to the public Biblio

Found 533 results

Filters: Keyword is Predictive Metrics  [Clear All Filters]
2019-11-25
Ye, Ruisong, Li, Yinhua, Li, Yajuan.  2018.  An Image Encryption Scheme Based on Fractal Interpolation. Proceedings of the 3rd International Conference on Multimedia and Image Processing. :52–56.
In this paper, a novel chaotic image encryption scheme based on the inverse fractal interpolation function system is proposed. The inverse fractal interpolation function system associated with fractal interpolation surface is applied to generate chaotic sequences. The derived sequences are then employed to permute the pixel positions to get the shuffled image by chaotic sequence sorting. The obtained chaotic sequences are then quantized to yield one pseudo-random gray value sequence used to perform diffusion to enhance the security. The security and performance of the proposed image encryption scheme have been analysed, including histograms, correlation coefficients, information entropy, differential analysis, etc. All the experimental results suggest that the proposed image encryption scheme is robust and secure and can be used for secure image and video communication applications.
Wu, Qi.  2018.  A Pseudorandom Bit Generator Based on a Dependent Variable Exclusively Coupled Chaotic System. Proceedings of the 3rd International Conference on Intelligent Information Processing. :11–16.
Coupling is a common approach for constructing new chaotic systems. In this paper, I present a novel way of coupling, which is utilized to construct a new chaotic system. Afterwards, the system is analyzed in detail and a pseudorandom bit generator is proposed based on it. Next, I employ five statistic tests to evaluate the pseudo randomness of generated sequences. Linear complexity and cipher space are analyzed at last. All the results demonstrate that the proposed generator possesses excellent properties.
Ye, Guodong, Huang, Xiaoling, Pan, Chen.  2018.  An Efficient Image Encryption Algorithm Based on Three-dimensional Chaotic Map. Proceedings of the 2Nd International Conference on Advances in Image Processing. :78–82.
In this paper, a new image encryption algorithm is presented with one chaotic map and one group of secret keys. Double permutations for pixel positions are designed followed by a function of diffusion to alter gray distribution in the plain-image. In the proposed algorithm, the keystream is produced and dependent on the plain-image. As a result, the method can frustrate the known plaintext attack and chosen plaintext attack. Moreover, diffusion encryption by row-only is applied to the permuted image to save time consumption. Then, the experimental results show that our method can perform high security and is suitable for both gray and color images.
2019-10-28
Kanewala, Thejaka Amila, Zalewski, Marcin, Lumsdaine, Andrew.  2018.  Distributed, Shared-Memory Parallel Triangle Counting. Proceedings of the Platform for Advanced Scientific Computing Conference. :5:1–5:12.
Triangles are the most basic non-trivial subgraphs. Triangle counting is used in a number of different applications, including social network mining, cyber security, and spam detection. In general, triangle counting algorithms are readily parallelizable, but when implemented in distributed, shared-memory, their performance is poor due to high communication, imbalance of work, and the difficulty of exploiting locality available in shared memory. In this paper, we discuss four different (but related) triangle counting algorithms and how their performance can be improved in distributed, shared-memory by reducing in-node load imbalance, improving cache utilization, minimizing network overhead, and minimizing algorithmic work. We generalize the four different triangle counting algorithms into a common framework and show that for all four algorithms the in-node load imbalance can be minimized while utilizing caches by partitioning work into blocks of vertices, the network overhead can be minimized by aggregation of blocks of work, and algorithm work can be reduced by partitioning vertex neighbors by degree. We experimentally evaluate the weak and the strong scaling performance of the proposed algorithms with two types of synthetic graph inputs and three real-world graph inputs. We also compare the performance of our implementations with the distributed, shared-memory triangle counting algorithms available in PowerGraph-GraphLab and show that our proposed algorithms outperform those algorithms, both in terms of space and time.
Zhai, Keke, Banerjee, Tania, Zwick, David, Hackl, Jason, Ranka, Sanjay.  2018.  Dynamic Load Balancing for Compressible Multiphase Turbulence. Proceedings of the 2018 International Conference on Supercomputing. :318–327.
CMT-nek is a new scientific application for performing high fidelity predictive simulations of particle laden explosively dispersed turbulent flows. CMT-nek involves detailed simulations, is compute intensive and is targeted to be deployed on exascale platforms. The moving particles are the main source of load imbalance as the application is executed on parallel processors. In a demonstration problem, all the particles are initially in a closed container until a detonation occurs and the particles move apart. If all processors get an equal share of the fluid domain, then only some of the processors get sections of the domain that are initially laden with particles, leading to disparate load on the processors. In order to eliminate load imbalance in different processors and to speedup the makespan, we present different load balancing algorithms for CMT-nek on large scale multicore platforms consisting of hundred of thousands of cores. The detailed process of the load balancing algorithms are presented. The performance of the different load balancing algorithms are compared and the associated overheads are analyzed. Evaluations on the application with and without load balancing are conducted and these show that with load balancing, simulation time becomes faster by a factor of up to 9.97.
Withers, Alex, Bockelman, Brian, Weitzel, Derek, Brown, Duncan, Gaynor, Jeff, Basney, Jim, Tannenbaum, Todd, Miller, Zach.  2018.  SciTokens: Capability-Based Secure Access to Remote Scientific Data. Proceedings of the Practice and Experience on Advanced Research Computing. :24:1–24:8.
The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.
Blanquer, Ignacio, Meira, Wagner.  2018.  EUBra-BIGSEA, A Cloud-Centric Big Data Scientific Research Platform. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :47–48.
This paper describes the achievements of project EUBra-BIGSEA, which has delivered programming models and data analytics tools for the development of distributed Big Data applications. As framework components, multiple data models are supported (e.g. data streams, multidimensional data, etc.) and efficient mechanisms to ensure privacy and security, on top of a QoS-aware layer for the smart and rapid provisioning of resources in a cloud-based environment.
Ocaña, Kary, Galheigo, Marcelo, Osthoff, Carla, Gadelha, Luiz, Gomes, Antônio Tadeu A., De Oliveira, Daniel, Porto, Fabio, Vasconcelos, Ana Tereza.  2019.  Towards a Science Gateway for Bioinformatics: Experiences in the Brazilian System of High Performance Computing. 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :638–647.

Science gateways bring out the possibility of reproducible science as they are integrated into reusable techniques, data and workflow management systems, security mechanisms, and high performance computing (HPC). We introduce BioinfoPortal, a science gateway that integrates a suite of different bioinformatics applications using HPC and data management resources provided by the Brazilian National HPC System (SINAPAD). BioinfoPortal follows the Software as a Service (SaaS) model and the web server is freely available for academic use. The goal of this paper is to describe the science gateway and its usage, addressing challenges of designing a multiuser computational platform for parallel/distributed executions of large-scale bioinformatics applications using the Brazilian HPC resources. We also present a study of performance and scalability of some bioinformatics applications executed in the HPC environments and perform machine learning analyses for predicting features for the HPC allocation/usage that could better perform the bioinformatics applications via BioinfoPortal.

Huang, Jingwei.  2018.  From Big Data to Knowledge: Issues of Provenance, Trust, and Scientific Computing Integrity. 2018 IEEE International Conference on Big Data (Big Data). :2197–2205.
This paper addresses the nature of data and knowledge, the relation between them, the variety of views as a characteristic of Big Data regarding that data may come from many different sources/views from different viewpoints, and the associated essential issues of data provenance, knowledge provenance, scientific computing integrity, and trust in the data science process. Towards the direction of data-intensive science and engineering, it is of paramount importance to ensure Scientific Computing Integrity (SCI). A failure of SCI may be caused by malicious attacks, natural environmental changes, faults of scientists, operations mistakes, faults of supporting systems, faults of processes, and errors in the data or theories on which a research relies. The complexity of scientific workflows and large provenance graphs as well as various causes for SCI failures make ensuring SCI extremely difficult. Provenance and trust play critical role in evaluating SCI. This paper reports our progress in building a model for provenance-based trust reasoning about SCI.
Trunov, Artem S., Voronova, Lilia I., Voronov, Vyacheslav I., Ayrapetov, Dmitriy P..  2018.  Container Cluster Model Development for Legacy Applications Integration in Scientific Software System. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :815–819.
Feature of modern scientific information systems is their integration with computing applications, providing distributed computer simulation and intellectual processing of Big Data using high-efficiency computing. Often these software systems include legacy applications in different programming languages, with non-standardized interfaces. To solve the problem of applications integration, containerization systems are using that allow to configure environment in the shortest time to deploy software system. However, there are no such systems for computer simulation systems with large number of nodes. The article considers the actual task of combining containers into a cluster, integrating legacy applications to manage the distributed software system MD-SLAG-MELT v.14, which supports high-performance computing and visualization of the computer experiments results. Testing results of the container cluster including automatic load sharing module for MD-SLAG-MELT system v.14. are given.
2019-10-08
Rahman, M. S., Hossam-E-Haider, M..  2019.  Quantum IoT: A Quantum Approach in IoT Security Maintenance. 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST). :269–272.

Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.

2019-09-23
Hunag, C., Yang, C., Weng, C., Chen, Y., Wang, S..  2019.  Secure Protocol for Identity-based Provable Data Possession in Cloud Storage. 2019 IEEE 4th International Conference on Computer and Communication Systems (ICCCS). :327–331.
Remote data possession is becoming an increasingly important issue in cloud storage. It enables users to verify if their outsourced data have remained intact while in cloud storage. The existing remote data audit (RDA) protocols were designed with the public key infrastructure (PKI) system. However, this incurs considerable costs when users need to frequently access data from the cloud service provider with PKI. This study proposes a protocol, called identity-based RDA (ID-RDA) that addresses this problem without the need for users’ certificates. This study outperforms existing RDA protocols in computation and communication.
Eugster, P., Marson, G. A., Poettering, B..  2018.  A Cryptographic Look at Multi-party Channels. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :31–45.
Cryptographic channels aim to enable authenticated and confidential communication over the Internet. The general understanding seems to be that providing security in the sense of authenticated encryption for every (unidirectional) point-to-point link suffices to achieve this goal. As recently shown (in FSE17/ToSC17), however, the security properties of the unidirectional links do not extend, in general, to the bidirectional channel as a whole. Intuitively, the reason for this is that the increased interaction in bidirectional communication can be exploited by an adversary. The same applies, a fortiori, in a multi-party setting where several users operate concurrently and the communication develops in more directions. In the cryptographic literature, however, the targeted goals for group communication in terms of channel security are still unexplored. Applying the methodology of provable security, we fill this gap by defining exact (game-based) authenticity and confidentiality goals for broadcast communication, and showing how to achieve them. Importantly, our security notions also account for the causal dependencies between exchanged messages, thus naturally extending the bidirectional case where causal relationships are automatically captured by preserving the sending order. On the constructive side we propose a modular and yet efficient protocol that, assuming only point-to-point links between users, leverages (non-cryptographic) broadcast and standard cryptographic primitives to a full-fledged broadcast channel that provably meets the security notions we put forth.
Aydin, Y., Ozkaynak, F..  2019.  A Provable Secure Image Encryption Schema Based on Fractional Order Chaotic Systems. 2019 23rd International Conference Electronics. :1–5.
In the literature, many chaotic systems have been used in the design of image encryption algorithms. In this study, an application of fractional order chaotic systems is investigated. The aim of the study is to improve the disadvantageous aspects of existing methods based on discrete and continuous time chaotic systems by utilizing the features of fractional order chaotic systems. The most important advantage of the study compared to the literature is that the proposed encryption algorithm is designed with a provable security approach. Analyses results have been shown that the proposed method can be used successfully in many information security applications.
Moon, J., Lee, Y., Yang, H., Song, T., Won, D..  2018.  Cryptanalysis of a privacy-preserving and provable user authentication scheme for wireless sensor networks based on Internet of Things security. 2018 International Conference on Information Networking (ICOIN). :432–437.
User authentication in wireless sensor networks is more complex than normal networks due to sensor network characteristics such as unmanned operation, limited resources, and unreliable communication. For this reason, various authentication protocols have been presented to provide secure and efficient communication. In 2017, Wu et al. presented a provable and privacy-preserving user authentication protocol for wireless sensor networks. Unfortunately, we found that Wu et al.'s protocol was still vulnerable against user impersonation attack, and had a problem in the password change phase. We show how an attacker can impersonate an other user and why the password change phase is ineffective.
Ammar, Mahmoud, Daniels, Wilfried, Crispo, Bruno, Hughes, Danny.  2018.  SPEED: Secure Provable Erasure for Class-1 IoT Devices. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :111–118.
The Internet of Things (IoT) consists of embedded devices that sense and manage our environment in a growing range of applications. Large-scale IoT systems such as smart cities require significant investment in both equipment and personnel. To maximize return on investment, IoT platforms should support multiple third-party applications and adaptation of infrastructure over time. Realizing the vision of shared IoT platforms demands strong security guarantees. That is particularly challenging considering the limited capability and resource constraints of many IoT devices. In this paper, we present SPEED, an approach to secure erasure with verifiability in IoT. Secure erasure is a fundamental property when it comes to share an IoT platform with other users which guarantees the cleanness of a device's memory at the beginning of the application deployment as well as at the time of releasing the underlying IoT device. SPEED relies on two security primitives: memory isolation and distance bounding protocol. We evaluate the performance of SPEED by implementing it on a simple bare-metal IoT device belongs to Class-1. Our evaluation results show a limited overhead in terms of memory footprint, time, and energy consumption.
Sahin, Cetin, Kuczenski, Brandon, Egecioglu, Omer, El Abbadi, Amr.  2018.  Privacy-Preserving Certification of Sustainability Metrics. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :53–63.
Companies are often motivated to evaluate their environmental sustainability, and to make public pronouncements about their performance with respect to quantitative sustainability metrics. Public trust in these declarations is enhanced if the claims are certified by a recognized authority. Because accurate evaluations of environmental impacts require detailed information about industrial processes throughout a supply chain, protecting the privacy of input data in sustainability assessment is of paramount importance. We introduce a new paradigm, called privacy-preserving certification, that enables the computation of sustainability indicators in a privacy-preserving manner, allowing firms to be classified based on their individual performance without revealing sensitive information to the certifier, other parties, or the public. In this work, we describe different variants of the certification problem, highlight the necessary security requirements, and propose a provably-secure novel framework that performs the certification operations under the management of an authorized, yet untrusted, party without compromising confidential information.
Duan, Li, Li, Yong, Liao, Lijun.  2018.  Flexible Certificate Revocation List for Efficient Authentication in IoT. Proceedings of the 8th International Conference on the Internet of Things. :7:1–7:8.

When relying on public key infrastructure (PKI) for authentication, whether a party can be trusted primarily depends on its certificate status. Bob's certificate status can be retrieved by Alice through her interaction with Certificate Authority (CA) in the PKI. More specifically, Alice can download Certificate Revocation List (CRL) and then check whether the serial number of the Bob's certificate appears in this list. If not found, Alice knows that Bob can be trusted. Once downloaded, a CRL can be used offline for arbitrary many times till it expires, which saves the bandwidth to an extreme. However, if the number of revoked certificates becomes too large, the size of the CRL will exceed the RAM of Alice's device. This conflict between bandwidth and RAM consumption becomes even more challenging for the Internet-of-Things (IoT), since the IoT end-devices is usually constrained by both factors. To solve this problem in PKI-based authentication in IoT, we proposed two novel lightweight CRL protocols with maximum flexibility tailored for constrained IoT end-devices. The first one is based on generalized Merkle hash tree and the second is based on Bloom filter. We also provided quantitative theorems for CRL parameter configuration, which help strike perfect balance among bandwidth, RAM usage and security in various practical IoT scenarios. Furthermore, we thoroughly evaluated the proposed CRL protocols and exhibited their outstanding efficiency in terms of RAM and bandwidth consumption. In addition, our formal treatment of the security of a CRL protocol can also be of independent interest.

2019-09-11
Wang, L., Wang, D., Gao, J., Huo, C., Bai, H., Yuan, J..  2019.  Research on Multi-Source Data Security Protection of Smart Grid Based on Quantum Key Combination. 2019 IEEE 4th International Conference on Cloud Computing and Big Data Analysis (ICCCBDA). :449–453.

Power communication network is an important infrastructure of power system. For a large number of widely distributed business terminals and communication terminals. The data protection is related to the safe and stable operation of the whole power grid. How to solve the problem that lots of nodes need a large number of keys and avoid the situation that these nodes cannot exchange information safely because of the lack of keys. In order to solve the problem, this paper proposed a segmentation and combination technology based on quantum key to extend the limited key. The basic idea was to obtain a division scheme according to different conditions, and divide a key into several different sub-keys, and then combine these key segments to generate new keys and distribute them to different terminals in the system. Sufficient keys were beneficial to key updating, and could effectively enhance the ability of communication system to resist damage and intrusion. Through the analysis and calculation, the validity of this method in the use of limited quantum keys to achieve the business data secure transmission of a large number of terminal was further verified.

Xi, W., Suo, S., Cai, T., Jian, G., Yao, H., Fan, L..  2019.  A Design and Implementation Method of IPSec Security Chip for Power Distribution Network System Based on National Cryptographic Algorithms. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :2307–2310.

The target of security protection of the power distribution automation system (the distribution system for short) is to ensure the security of communication between the distribution terminal (terminal for short) and the distribution master station (master system for short). The encryption and authentication gateway (VPN gateway for short) for distribution system enhances the network layer communication security between the terminal and the VPN gateway. The distribution application layer encryption authentication device (master cipher machine for short) ensures the confidentiality and integrity of data transmission in application layer, and realizes the identity authentication between the master station and the terminal. All these measures are used to prevent malicious damage and attack to the master system by forging terminal identity, replay attack and other illegal operations, in order to prevent the resulting distribution network system accidents. Based on the security protection scheme of the power distribution automation system, this paper carries out the development of multi-chip encapsulation, develops IPSec Protocols software within the security chip, and realizes dual encryption and authentication function in IP layer and application layer supporting the national cryptographic algorithm.

Yin, Z., Dou, S., Bai, H., Hou, Y..  2019.  Light-Weighted Security Access Scheme of Broadband Power Line Communications for Multi-Source Information Collection. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). :1087–1090.

With the continuously development of smart meter-reading technologies for decades, remote information collection of electricity, water, gas and heat meters have been realized. Due to the difference of electrical interfaces and communication protocols among various types of meters, communication modes of meter terminals are not so compatible, it is difficult to realize communication optimization of electricity, water, gas and heat meters information collection services. In addition, with the development of power consumption information acquisition system, the number of acquisition terminals soars greatly and the data of terminal access is highly concurrent. Therefore, the risk of security access is increasing. This paper presents a light-weighted security access scheme of power line communication based on multi-source data acquisition of electricity, water, gas and heat meters, which separates multi-source data acquisition services and achieve services security isolation and channel security isolation. The communication reliability and security of the meter-reading service of "electricity, water, gas and heat" will be improved and the integrated meter service will be realized reliably.

2019-09-09
Kesidis, G., Shan, Y., Fleck, D., Stavrou, A., Konstantopoulos, T..  2018.  An adversarial coupon-collector model of asynchronous moving-target defense against botnet reconnaissance*. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :61–67.

We consider a moving-target defense of a proxied multiserver tenant of the cloud where the proxies dynamically change to defeat reconnaissance activity by a botnet planning a DDoS attack targeting the tenant. Unlike the system of [4] where all proxies change simultaneously at a fixed rate, we consider a more “responsive” system where the proxies may change more rapidly and selectively based on the current session request intensity, which is expected to be abnormally large during active reconnaissance. In this paper, we study a tractable “adversarial” coupon-collector model wherein proxies change after a random period of time from the latest request, i.e., asynchronously. In addition to determining the stationary mean number of proxies discovered by the attacker, we study the age of a proxy (coupon type) when it has been identified (requested) by the botnet. This gives us the rate at which proxies change (cost to the defender) when the nominal client request load is relatively negligible.

Narantuya, J., Yoon, S., Lim, H., Cho, J., Kim, D. S., Moore, T., Nelson, F..  2019.  SDN-Based IP Shuffling Moving Target Defense with Multiple SDN Controllers. 2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S). :15–16.

Conventional SDN-based MTD techniques have been mainly developed with a single SDN controller which exposes a single point of failure as well as raises a scalability issue for large-scale networks in achieving both security and performance. The use of multiple SDN controllers has been proposed to ensure both performance and security of SDN-based MTD systems for large-scale networks; however, the effect of using multiple SDN controllers has not been investigated in the state-of-the-art research. In this paper, we propose the SDN based MTD architecture using multiple SDN controllers and validate their security effect (i.e., attack success probability) by implementing an IP shuffling MTD in a testbed using ONOS SDN controllers.

Zhang, Z., Yu, Q., Njilla, L., Kamhoua, C..  2018.  FPGA-oriented moving target defense against security threats from malicious FPGA tools. 2018 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :163–166.
The imbalance relationship between FPGA hardware/software providers and FPGA users challenges the assurance of secure design on FPGAs. Existing efforts on FPGA security primarily focus on reverse engineering the downloaded FPGA configuration, retrieving the authentication code or crypto key stored on the embedded memory in FPGAs, and countermeasures for the security threats above. In this work, we investigate new security threats from malicious FPGA tools, and identify stealthy attacks that could occur during FPGA deployment. To address those attacks, we exploit the principles of moving target defense (MTD) and propose a FPGA-oriented MTD (FOMTD) method. Our method is composed of three defense lines, which are formed by an improved user constraint file, random selection of design replicas, and runtime submodule assembling, respectively. The FPGA emulation results show that the proposed FOMTD method reduces the hardware Trojan hit rate by 60% over the baseline, at the cost of 10.76% more power consumption.
Macwan, S., Lung, C..  2019.  Investigation of Moving Target Defense Technique to Prevent Poisoning Attacks in SDN. 2019 IEEE World Congress on Services (SERVICES). 2642-939X:178–183.
The motivation behind Software-Defined Networking (SDN) is to allow services and network capabilities to be managed through a central control point. Moving Target Defense (MTD) introduces a constantly changing environment in order to delay or prevent attacks on a system. For the effective use of MTD, SDN can be used to help confuse the attacker from gathering legitimate information about the network. This paper investigates how SDN can be used for some network based MTD techniques and evaluate the benefits of integrating techniques in SDN and MTD. In the experiment, network assets are kept hidden from inside and outside attackers. Furthermore, the SDN controller is programed to perform IP mutation to keep changing real IP addresses of the underlying hosts by assigning each host a virtual IP address at a configured mutation rate to prevent attackers from stealing the real IP addresses or using fake IP addresses. The paper demonstrates experimental evaluation of the MTD technique using the Ryu controller and mininet. The results show that the MTD technique can be easily integrated into the SDN environment to use virtual IP addresses for hosts to reduce the chance of poisoning attacks.