Biblio
Science gateways bring out the possibility of reproducible science as they are integrated into reusable techniques, data and workflow management systems, security mechanisms, and high performance computing (HPC). We introduce BioinfoPortal, a science gateway that integrates a suite of different bioinformatics applications using HPC and data management resources provided by the Brazilian National HPC System (SINAPAD). BioinfoPortal follows the Software as a Service (SaaS) model and the web server is freely available for academic use. The goal of this paper is to describe the science gateway and its usage, addressing challenges of designing a multiuser computational platform for parallel/distributed executions of large-scale bioinformatics applications using the Brazilian HPC resources. We also present a study of performance and scalability of some bioinformatics applications executed in the HPC environments and perform machine learning analyses for predicting features for the HPC allocation/usage that could better perform the bioinformatics applications via BioinfoPortal.
Securing Internet of things is a major concern as it deals with data that are personal, needed to be reliable, can direct and manipulate device decisions in a harmful way. Also regarding data generation process is heterogeneous, data being immense in volume, complex management. Quantum Computing and Internet of Things (IoT) coined as Quantum IoT defines a concept of greater security design which harness the virtue of quantum mechanics laws in Internet of Things (IoT) security management. Also it ensures secured data storage, processing, communication, data dynamics. In this paper, an IoT security infrastructure is introduced which is a hybrid one, with an extra layer, which ensures quantum state. This state prevents any sort of harmful actions from the eavesdroppers in the communication channel and cyber side, by maintaining its state, protecting the key by quantum cryptography BB84 protocol. An adapted version is introduced specific to this IoT scenario. A classical cryptography system `One-Time pad (OTP)' is used in the hybrid management. The novelty of this paper lies with the integration of classical and quantum communication for Internet of Things (IoT) security.
When relying on public key infrastructure (PKI) for authentication, whether a party can be trusted primarily depends on its certificate status. Bob's certificate status can be retrieved by Alice through her interaction with Certificate Authority (CA) in the PKI. More specifically, Alice can download Certificate Revocation List (CRL) and then check whether the serial number of the Bob's certificate appears in this list. If not found, Alice knows that Bob can be trusted. Once downloaded, a CRL can be used offline for arbitrary many times till it expires, which saves the bandwidth to an extreme. However, if the number of revoked certificates becomes too large, the size of the CRL will exceed the RAM of Alice's device. This conflict between bandwidth and RAM consumption becomes even more challenging for the Internet-of-Things (IoT), since the IoT end-devices is usually constrained by both factors. To solve this problem in PKI-based authentication in IoT, we proposed two novel lightweight CRL protocols with maximum flexibility tailored for constrained IoT end-devices. The first one is based on generalized Merkle hash tree and the second is based on Bloom filter. We also provided quantitative theorems for CRL parameter configuration, which help strike perfect balance among bandwidth, RAM usage and security in various practical IoT scenarios. Furthermore, we thoroughly evaluated the proposed CRL protocols and exhibited their outstanding efficiency in terms of RAM and bandwidth consumption. In addition, our formal treatment of the security of a CRL protocol can also be of independent interest.
Power communication network is an important infrastructure of power system. For a large number of widely distributed business terminals and communication terminals. The data protection is related to the safe and stable operation of the whole power grid. How to solve the problem that lots of nodes need a large number of keys and avoid the situation that these nodes cannot exchange information safely because of the lack of keys. In order to solve the problem, this paper proposed a segmentation and combination technology based on quantum key to extend the limited key. The basic idea was to obtain a division scheme according to different conditions, and divide a key into several different sub-keys, and then combine these key segments to generate new keys and distribute them to different terminals in the system. Sufficient keys were beneficial to key updating, and could effectively enhance the ability of communication system to resist damage and intrusion. Through the analysis and calculation, the validity of this method in the use of limited quantum keys to achieve the business data secure transmission of a large number of terminal was further verified.
The target of security protection of the power distribution automation system (the distribution system for short) is to ensure the security of communication between the distribution terminal (terminal for short) and the distribution master station (master system for short). The encryption and authentication gateway (VPN gateway for short) for distribution system enhances the network layer communication security between the terminal and the VPN gateway. The distribution application layer encryption authentication device (master cipher machine for short) ensures the confidentiality and integrity of data transmission in application layer, and realizes the identity authentication between the master station and the terminal. All these measures are used to prevent malicious damage and attack to the master system by forging terminal identity, replay attack and other illegal operations, in order to prevent the resulting distribution network system accidents. Based on the security protection scheme of the power distribution automation system, this paper carries out the development of multi-chip encapsulation, develops IPSec Protocols software within the security chip, and realizes dual encryption and authentication function in IP layer and application layer supporting the national cryptographic algorithm.
With the continuously development of smart meter-reading technologies for decades, remote information collection of electricity, water, gas and heat meters have been realized. Due to the difference of electrical interfaces and communication protocols among various types of meters, communication modes of meter terminals are not so compatible, it is difficult to realize communication optimization of electricity, water, gas and heat meters information collection services. In addition, with the development of power consumption information acquisition system, the number of acquisition terminals soars greatly and the data of terminal access is highly concurrent. Therefore, the risk of security access is increasing. This paper presents a light-weighted security access scheme of power line communication based on multi-source data acquisition of electricity, water, gas and heat meters, which separates multi-source data acquisition services and achieve services security isolation and channel security isolation. The communication reliability and security of the meter-reading service of "electricity, water, gas and heat" will be improved and the integrated meter service will be realized reliably.
We consider a moving-target defense of a proxied multiserver tenant of the cloud where the proxies dynamically change to defeat reconnaissance activity by a botnet planning a DDoS attack targeting the tenant. Unlike the system of [4] where all proxies change simultaneously at a fixed rate, we consider a more “responsive” system where the proxies may change more rapidly and selectively based on the current session request intensity, which is expected to be abnormally large during active reconnaissance. In this paper, we study a tractable “adversarial” coupon-collector model wherein proxies change after a random period of time from the latest request, i.e., asynchronously. In addition to determining the stationary mean number of proxies discovered by the attacker, we study the age of a proxy (coupon type) when it has been identified (requested) by the botnet. This gives us the rate at which proxies change (cost to the defender) when the nominal client request load is relatively negligible.
Conventional SDN-based MTD techniques have been mainly developed with a single SDN controller which exposes a single point of failure as well as raises a scalability issue for large-scale networks in achieving both security and performance. The use of multiple SDN controllers has been proposed to ensure both performance and security of SDN-based MTD systems for large-scale networks; however, the effect of using multiple SDN controllers has not been investigated in the state-of-the-art research. In this paper, we propose the SDN based MTD architecture using multiple SDN controllers and validate their security effect (i.e., attack success probability) by implementing an IP shuffling MTD in a testbed using ONOS SDN controllers.