Biblio
Smart metering is a mechanism through which fine-grained electricity usage data of consumers is collected periodically in a smart grid. However, a growing concern in this regard is that the leakage of consumers' consumption data may reveal their daily life patterns as the state-of-the-art metering strategies lack adequate security and privacy measures. Many proposed solutions have demonstrated how the aggregated metering information can be transformed to obscure individual consumption patterns without affecting the intended semantics of smart grid operations. In this paper, we expose a complete break of such an existing privacy preserving metering scheme [10] by determining individual consumption patterns efficiently, thus compromising its privacy guarantees. The underlying methodol-ogy of this scheme allows us to - i) retrieve the lower bounds of the privacy parameters and ii) establish a relationship between the privacy preserved output readings and the initial input readings. Subsequently, we present a rigorous experimental validation of our proposed attacking methodology using real-life dataset to highlight its efficacy. In summary, the present paper queries: Is the Whole lesser than its Parts? for such privacy aware metering algorithms which attempt to reduce the information leakage of aggregated consumption patterns of the individuals.
This short paper argues that current conceptions in trust formation scholarship miss the context of zero trust, a practice growing in importance in cyber security. The contribution of this paper presents a novel approach to help conceptualize and operationalize zero trust and a call for a research agenda. Further work will expand this model and explore the implications of zero trust in future digital systems.
Control systems for critical infrastructure are becoming increasingly interconnected while cyber threats against critical infrastructure are becoming more sophisticated and difficult to defend against. Historically, cyber security has emphasized building defenses to prevent loss of confidentiality, integrity, and availability in digital information and systems, but in recent years cyber attacks have demonstrated that no system is impenetrable and that control system operation may be detrimentally impacted. Cyber resilience has emerged as a complementary priority that seeks to ensure that digital systems can maintain essential performance levels, even while capabilities are degraded by a cyber attack. This paper examines how cyber security and cyber resilience may be measured and quantified in a control system environment. Load Frequency Control is used as an illustrative example to demonstrate how cyber attacks may be represented within mathematical models of control systems, to demonstrate how these events may be quantitatively measured in terms of cyber security or cyber resilience, and the differences and similarities between the two mindsets. These results demonstrate how various metrics are applied, the extent of their usability, and how it is important to analyze cyber-physical systems in a comprehensive manner that accounts for all the various parts of the system.
Recently, the home healthcare system has emerged as one of the most useful technology for e-healthcare. Contrary to classical recording methods of patient's medical data, which are, based on paper documents, nowadays all this sensitive data can be managed and forwarded through digital systems. These make possible for both patients and healthcare workers to access medical data or receive remote medical treatment using wireless interfaces whenever and wherever. However, simplifying access to these sensitive and private data can directly put patient's health and life in danger. In this paper, we propose a secure and lightweight biometric-based remote patient authentication scheme using elliptic curve encryption through which two mobile healthcare system communication parties could authenticate each other in public mobile healthcare environments. The security and performance analysis demonstrate that our proposal achieves better security than other concurrent schemes, with lower storage, communication and computation costs.
Our vision in this paper is that agency, as the individual ability to intervene and tailor the system, is a crucial element in building trust in IoT technologies. Following up on this vision, we will first address the issue of agency, namely the individual capability to adopt free decisions, as a relevant driver in building trusted human-IoT relations, and how agency should be embedded in digital systems. Then we present the main challenges posed by existing approaches to implement this vision. We show then our proposal for a model-based approach that realizes the agency concept, including a prototype implementation.