Visible to the public Biblio

Filters: Keyword is encrypted data  [Clear All Filters]
2019-02-13
Gunjal, Y. S., Gunjal, M. S., Tambe, A. R..  2018.  Hybrid Attribute Based Encryption and Customizable Authorization in Cloud Computing. 2018 International Conference On Advances in Communication and Computing Technology (ICACCT). :187–190.
Most centralized systems allow data access to its cloud user if a cloud user has a certain set of satisfying attributes. Presently, one method to compete such policies is to use an authorized cloud server to maintain the user data and have access control over it. At times, when one of the servers keeping data is compromised, the security of the user data is compromised. For getting access control, maintaining data security and obtaining precise computing results, the data owners have to keep attribute-based security to encrypt the stored data. During the delegation of data on cloud, the cloud servers may be tampered by the counterfeit cipher-text. Furthermore, the authorized users may be cheated by retorting them that they are unauthorized. Largely the encryption control access attribute policies are complex. In this paper, we present Cipher-text Policy Attribute-Based Encryption for maintaining complex access control over encrypted data with verifiable customizable authorization. The proposed technique provides data confidentiality to the encrypted data even if the storage server is comprised. Moreover, our method is highly secured against collusion attacks. In advance, performance evaluation of the proposed system is elaborated with implementation of the same.
2018-10-26
Ulz, T., Pieber, T., Steger, C., Matischek, R., Bock, H..  2017.  Towards trustworthy data in networked control systems: A hardware-based approach. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–8.

The importance of Networked Control Systems (NCS) is steadily increasing due to recent trends such as smart factories. Correct functionality of such NCS needs to be protected as malfunctioning systems could have severe consequences for the controlled process or even threaten human lives. However, with the increase in NCS, also attacks targeting these systems are becoming more frequent. To mitigate attacks that utilize captured sensor data in an NCS, transferred data needs to be protected. While using well-known methods such as Transport Layer Security (TLS) might be suitable to protect the data, resource constraint devices such as sensors often are not powerful enough to perform the necessary cryptographic operations. Also, as we will show in this paper, applying simple encryption in an NCS may enable easy Denial-of-Service (DoS) attacks by attacking single bits of the encrypted data. Therefore, in this paper, we present a hardware-based approach that enables sensors to perform the necessary encryption while being robust against (injected) bit failures.

2018-09-28
Rizomiliotis, Panagiotis, Molla, Eirini, Gritzalis, Stefanos.  2017.  REX: A Searchable Symmetric Encryption Scheme Supporting Range Queries. Proceedings of the 2017 on Cloud Computing Security Workshop. :29–37.
Searchable Symmetric Encryption is a mechanism that facilitates search over encrypted data that are outsourced to an untrusted server. SSE schemes are practical as they trade nicely security for efficiency. However, the supported functionalities are mainly limited to single keyword queries. In this paper, we present a new efficient SSE scheme, called REX, that supports range queries. REX is a no interactive (single round) and response-hiding scheme. It has optimal communication and search computation complexity, while it is much more secure than traditional Order Preserving Encryption based range SSE schemes.
2018-02-02
Mohamed, F., AlBelooshi, B., Salah, K., Yeun, C. Y., Damiani, E..  2017.  A Scattering Technique for Protecting Cryptographic Keys in the Cloud. 2017 IEEE 2nd International Workshops on Foundations and Applications of Self* Systems (FAS*W). :301–306.

Cloud computing has become a widely used computing paradigm providing on-demand computing and storage capabilities based on pay-as-you-go model. Recently, many organizations, especially in the field of big data, have been adopting the cloud model to perform data analytics through leasing powerful Virtual Machines (VMs). VMs can be attractive targets to attackers as well as untrusted cloud providers who aim to get unauthorized access to the business critical-data. The obvious security solution is to perform data analytics on encrypted data through the use of cryptographic keys as that of the Advanced Encryption Standard (AES). However, it is very easy to obtain AES cryptographic keys from the VM's Random Access Memory (RAM). In this paper, we present a novel key-scattering (KS) approach to protect the cryptographic keys while encrypting/decrypting data. Our solution is highly portable and interoperable. Thus, it could be integrated within today's existing cloud architecture without the need for further modifications. The feasibility of the approach has been proven by implementing a functioning prototype. The evaluation results show that our approach is substantially more resilient to brute force attacks and key extraction tools than the standard AES algorithm, with acceptable execution time.