Visible to the public Biblio

Filters: Keyword is unsolicited e-mail  [Clear All Filters]
2023-09-20
Ismael, Maher F., Thanoon, Karam H..  2022.  Investigation Malware Analysis Depend on Reverse Engineering Using IDAPro. 2022 8th International Conference on Contemporary Information Technology and Mathematics (ICCITM). :227—231.
Any software that runs malicious payloads on victims’ computers is referred to as malware. It is an increasing threat that costs people, businesses, and organizations a lot of money. Attacks on security have developed significantly in recent years. Malware may infiltrate both offline and online media, like: chat, SMS, and spam (email, or social media), because it has a built-in defensive mechanism and may conceal itself from antivirus software or even corrupt it. As a result, there is an urgent need to detect and prevent malware before it damages critical assets around the world. In fact, there are lots of different techniques and tools used to combat versus malware. In this paper, the malware samples were analyzing in the Virtual Box environment using in-depth analysis based on reverse engineering using advanced static malware analysis techniques. The results Obtained from malware analysis which represent a set of valuable information, all anti-malware and anti-virus program companies need for in order to update their products.
2023-02-17
Sasikala, V., Mounika, K., Sravya Tulasi, Y., Gayathri, D., Anjani, M..  2022.  Performance evaluation of Spam and Non-Spam E-mail detection using Machine Learning algorithms. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :1359–1365.
All of us are familiar with the importance of social media in facilitating communication. e-mail is one of the safest social media platforms for online communications and information transfer over the internet. As of now, many people rely on email or communications provided by strangers. Because everyone may send emails or a message, spammers have a great opportunity to compose spam messages about our many hobbies and passions, interests, and concerns. Our internet speeds are severely slowed down by spam, which also collects personal information like our phone numbers from our contact list. There is a lot of work involved in identifying these fraudsters and also identifying spam content. Email spam refers to the practice of sending large numbers of messages via email. The recipient bears the bulk of the cost of spam, therefore it's practically free advertising. Spam email is a form of commercial advertising for hackers that is financially viable due of the low cost of sending email. Anti-spam filters have become increasingly important as the volume of unwanted bulk e-mail (also spamming) grows. We can define a message, if it is a spam or not using this proposed model. Machine learning algorithms can be discussed in detail, and our data sets will be used to test them all, with the goal of identifying the one that is most accurate and precise in its identification of email spam. Society of machine learning techniques for detecting unsolicited mass email and spam.
Xu, Mingming, Zhang, Lu, Zhu, Haiting.  2022.  Finding Collusive Spam in Community Question Answering Platforms: A Pattern and Burstiness Based Method. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :89–94.
Community question answering (CQA) websites have become very popular platforms attracting numerous participants to share and acquire knowledge and information in Internet However, with the rapid growth of crowdsourcing systems, many malicious users organize collusive attacks against the CQA platforms for promoting a target (product or service) via posting suggestive questions and deceptive answers. These manipulate deceptive contents, aggregating into multiple collusive questions and answers (Q&As) spam groups, can fully control the sentiment of a target and distort the decision of users, which pollute the CQA environment and make it less credible. In this paper, we propose a Pattern and Burstiness based Collusive Q&A Spam Detection method (PBCSD) to identify the deceptive questions and answers. Specifically, we intensively study the campaign process of crowdsourcing tasks and summarize the clues in the Q&As’ vocabulary usage level when collusive attacks are launched. Based on the clues, we extract the Q&A groups using frequent pattern mining and further purify them by the burstiness on posting time of Q&As. By designing several discriminative features at the Q&A group level, multiple machine learning based classifiers can be used to judge the groups as deceptive or ordinary, and the Q&As in deceptive groups are finally identified as collusive Q&A spam. We evaluate the proposed PBCSD method in a real-world dataset collected from Baidu Zhidao, a famous CQA platform in China, and the experimental results demonstrate the PBCSD is effective for collusive Q&A spam detection and outperforms a number of state-of-art methods.
Georgieva-Trifonova, Tsvetanka.  2022.  Research on Filtering Feature Selection Methods for E-Mail Spam Detection by Applying K-NN Classifier. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–4.
In the present paper, the application of filtering methods to select features when detecting email spam using the K-NN classifier is examined. The experiments include computation of the accuracy and F-measure of the e-mail texts classification with different methods for feature selection, different number of selected features and two ways to find the distance between dataset examples when executing K-NN classifier - Euclidean distance and cosine similarity. The obtained results are summarized and analyzed.
2022-10-13
Jin, Yong, Tomoishi, Masahiko, Yamai, Nariyoshi.  2020.  A Detour Strategy for Visiting Phishing URLs Based on Dynamic DNS Response Policy Zone. 2020 International Symposium on Networks, Computers and Communications (ISNCC). :1—6.
Email based Uniform Resource Locator (URL) distribution is one of the popular ways for starting phishing attacks. Conventional anti-phishing solutions rely on security facilities and investigate all incoming emails. This makes the security facilities get overloaded and cause consequences of upgrades or new deployments even with no better options. This paper presents a novel detour strategy for the traffic of visiting potential phishing URLs based on dynamic Domain Name System (DNS) Response Policy Zone (RPZ) in order to mitigate the overloads on security facilities. In the strategy, the URLs included in the incoming emails will be extracted and the corresponding Fully Qualified Domain Name (FQDN) will be registered in the RPZ of the local DNS cache server with mapping the IP address of a special Hypertext Transfer Protocol (HTTP) proxy. The contribution of the approach is to avoid heavy investigations on all incoming emails and mitigate the overloads on security facilities by directing the traffic to phishing URLs to the special HTTP proxy connected with a set of security facilities conducting various inspections. The evaluation results on the prototype system showed that the URL extraction and FQDN registration were finished before the emails had been delivered and accesses to the URLs were successfully directed to the special HTTP proxy. The results of overhead measurements also confirmed that the proposed strategy only affected the internal email server with 11% of performance decrease on the prototype system.
Drury, Vincent, Meyer, Ulrike.  2020.  No Phishing With the Wrong Bait: Reducing the Phishing Risk by Address Separation. 2020 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :646—652.
Email-based phishing is still a widespread problem, that affects many users worldwide. Although many aspects of phishing have been extensively studied in the past, they mainly focus on the execution and prevention of different types of phishing and do not consider the process how attackers collect the contact information of potential victims. In this paper, we analyze the collection process of email addresses in more detail. Based on the results of this analysis, we propose email address separation as a way for users to detect phishing emails, and reason about its effectiveness against several typical types of phishing attacks. We find, that email address separation has the potential to greatly reduce the perceived authenticity of general phishing emails, that target a large amount of users, e.g., by impersonating a popular service and spreading malware or links to phishing websites. It is, however, not likely to prevent more sophisticated phishing attacks, that do not depend on the impersonation of a previously known organization or entity. Our results motivate further studies to analyze the usability and applicability of the proposed method, and to determine, whether address separation has additional positive effects on users’ phishing awareness or automated phishing detection.
2021-11-08
Shaukat, Kamran, Luo, Suhuai, Chen, Shan, Liu, Dongxi.  2020.  Cyber Threat Detection Using Machine Learning Techniques: A Performance Evaluation Perspective. 2020 International Conference on Cyber Warfare and Security (ICCWS). :1–6.
The present-day world has become all dependent on cyberspace for every aspect of daily living. The use of cyberspace is rising with each passing day. The world is spending more time on the Internet than ever before. As a result, the risks of cyber threats and cybercrimes are increasing. The term `cyber threat' is referred to as the illegal activity performed using the Internet. Cybercriminals are changing their techniques with time to pass through the wall of protection. Conventional techniques are not capable of detecting zero-day attacks and sophisticated attacks. Thus far, heaps of machine learning techniques have been developed to detect the cybercrimes and battle against cyber threats. The objective of this research work is to present the evaluation of some of the widely used machine learning techniques used to detect some of the most threatening cyber threats to the cyberspace. Three primary machine learning techniques are mainly investigated, including deep belief network, decision tree and support vector machine. We have presented a brief exploration to gauge the performance of these machine learning techniques in the spam detection, intrusion detection and malware detection based on frequently used and benchmark datasets.
2021-04-27
Gui, J., Li, D., Chen, Z., Rhee, J., Xiao, X., Zhang, M., Jee, K., Li, Z., Chen, H..  2020.  APTrace: A Responsive System for Agile Enterprise Level Causality Analysis. 2020 IEEE 36th International Conference on Data Engineering (ICDE). :1701–1712.
While backtracking analysis has been successful in assisting the investigation of complex security attacks, it faces a critical dependency explosion problem. To address this problem, security analysts currently need to tune backtracking analysis manually with different case-specific heuristics. However, existing systems fail to fulfill two important system requirements to achieve effective backtracking analysis. First, there need flexible abstractions to express various types of heuristics. Second, the system needs to be responsive in providing updates so that the progress of backtracking analysis can be frequently inspected, which typically involves multiple rounds of manual tuning. In this paper, we propose a novel system, APTrace, to meet both of the above requirements. As we demonstrate in the evaluation, security analysts can effectively express heuristics to reduce more than 99.5% of irrelevant events in the backtracking analysis of real-world attack cases. To improve the responsiveness of backtracking analysis, we present a novel execution-window partitioning algorithm that significantly reduces the waiting time between two consecutive updates (especially, 57 times reduction for the top 1% waiting time).
2021-03-09
Zhou, B., He, J., Tan, M..  2020.  A Two-stage P2P Botnet Detection Method Based on Statistical Features. 2020 IEEE 11th International Conference on Software Engineering and Service Science (ICSESS). :497—502.

P2P botnet has become one of the most serious threats to today's network security. It can be used to launch kinds of malicious activities, ranging from spamming to distributed denial of service attack. However, the detection of P2P botnet is always challenging because of its decentralized architecture. In this paper, we propose a two-stage P2P botnet detection method which only relies on several traffic statistical features. This method first detects P2P hosts based on three statistical features, and then distinguishes P2P bots from benign P2P hosts by means of another two statistical features. Experimental evaluations on real-world traffic datasets shows that our method is able to detect hidden P2P bots with a detection accuracy of 99.7% and a false positive rate of only 0.3% within 5 minutes.

Cui, L., Huang, D., Zheng, X..  2020.  Reliability Analysis of Concurrent Data based on Botnet Modeling. 2020 Fourth International Conference on Inventive Systems and Control (ICISC). :825—828.

Reliability analysis of concurrent data based on Botnet modeling is conducted in this paper. At present, the detection methods for botnets are mainly focused on two aspects. The first type requires the monitoring of high-privilege systems, which will bring certain security risks to the terminal. The second type is to identify botnets by identifying spam or spam, which is not targeted. By introducing multi-dimensional permutation entropy, the impact of permutation entropy on the permutation entropy is calculated based on the data communicated between zombies, describing the complexity of the network traffic time series, and the clustering variance method can effectively solve the difficulty of the detection. This paper is organized based on the data complex structure analysis. The experimental results show acceptable performance.

2020-11-09
Ankam, D., Bouguila, N..  2018.  Compositional Data Analysis with PLS-DA and Security Applications. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :338–345.
In Compositional data, the relative proportions of the components contain important relevant information. In such case, Euclidian distance fails to capture variation when considered within data science models and approaches such as partial least squares discriminant analysis (PLS-DA). Indeed, the Euclidean distance assumes implicitly that the data is normally distributed which is not the case of compositional vectors. Aitchison transformation has been considered as a standard in compositional data analysis. In this paper, we consider two other transformation methods, Isometric log ratio (ILR) transformation and data-based power (alpha) transformation, before feeding the data to PLS-DA algorithm for classification [1]. In order to investigate the merits of both methods, we apply them in two challenging information system security applications namely spam filtering and intrusion detection.
2020-05-18
Lee, Hyun-Young, Kang, Seung-Shik.  2019.  Word Embedding Method of SMS Messages for Spam Message Filtering. 2019 IEEE International Conference on Big Data and Smart Computing (BigComp). :1–4.
SVM has been one of the most popular machine learning method for the binary classification such as sentiment analysis and spam message filtering. We explored a word embedding method for the construction of a feature vector and the deep learning method for the binary classification. CBOW is used as a word embedding technique and feedforward neural network is applied to classify SMS messages into ham or spam. The accuracy of the two classification methods of SVM and neural network are compared for the binary classification. The experimental result shows that the accuracy of deep learning method is better than the conventional machine learning method of SVM-light in the binary classification.
Sel, Slhami, Hanbay, Davut.  2019.  E-Mail Classification Using Natural Language Processing. 2019 27th Signal Processing and Communications Applications Conference (SIU). :1–4.
Thanks to the rapid increase in technology and electronic communications, e-mail has become a serious communication tool. In many applications such as business correspondence, reminders, academic notices, web page memberships, e-mail is used as primary way of communication. If we ignore spam e-mails, there remain hundreds of e-mails received every day. In order to determine the importance of received e-mails, the subject or content of each e-mail must be checked. In this study we proposed an unsupervised system to classify received e-mails. Received e-mails' coordinates are determined by a method of natural language processing called as Word2Vec algorithm. According to the similarities, processed data are grouped by k-means algorithm with an unsupervised training model. In this study, 10517 e-mails were used in training. The success of the system is tested on a test group of 200 e-mails. In the test phase M3 model (window size 3, min. Word frequency 10, Gram skip) consolidated the highest success (91%). Obtained results are evaluated in section VI.
Peng, Tianrui, Harris, Ian, Sawa, Yuki.  2018.  Detecting Phishing Attacks Using Natural Language Processing and Machine Learning. 2018 IEEE 12th International Conference on Semantic Computing (ICSC). :300–301.
Phishing attacks are one of the most common and least defended security threats today. We present an approach which uses natural language processing techniques to analyze text and detect inappropriate statements which are indicative of phishing attacks. Our approach is novel compared to previous work because it focuses on the natural language text contained in the attack, performing semantic analysis of the text to detect malicious intent. To demonstrate the effectiveness of our approach, we have evaluated it using a large benchmark set of phishing emails.
2020-05-08
Katasev, Alexey S., Emaletdinova, Lilia Yu., Kataseva, Dina V..  2018.  Neural Network Spam Filtering Technology. 2018 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM). :1—5.

In this paper we solve the problem of neural network technology development for e-mail messages classification. We analyze basic methods of spam filtering such as a sender IP-address analysis, spam messages repeats detection and the Bayesian filtering according to words. We offer the neural network technology for solving this problem because the neural networks are universal approximators and effective in addressing the problems of classification. Also, we offer the scheme of this technology for e-mail messages “spam”/“not spam” classification. The creation of effective neural network model of spam filtering is performed within the databases knowledge discovery technology. For this training set is formed, the neural network model is trained, its value and classifying ability are estimated. The experimental studies have shown that a developed artificial neural network model is adequate and it can be effectively used for the e-mail messages classification. Thus, in this paper we have shown the possibility of the effective neural network model use for the e-mail messages filtration and have shown a scheme of artificial neural network model use as a part of the e-mail spam filtering intellectual system.

2020-04-17
Oest, Adam, Safaei, Yeganeh, Doupé, Adam, Ahn, Gail-Joon, Wardman, Brad, Tyers, Kevin.  2019.  PhishFarm: A Scalable Framework for Measuring the Effectiveness of Evasion Techniques against Browser Phishing Blacklists. 2019 IEEE Symposium on Security and Privacy (SP). :1344—1361.

Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.

2020-04-10
Huang, Yongjie, Qin, Jinghui, Wen, Wushao.  2019.  Phishing URL Detection Via Capsule-Based Neural Network. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :22—26.

As a cyber attack which leverages social engineering and other sophisticated techniques to steal sensitive information from users, phishing attack has been a critical threat to cyber security for a long time. Although researchers have proposed lots of countermeasures, phishing criminals figure out circumventions eventually since such countermeasures require substantial manual feature engineering and can not detect newly emerging phishing attacks well enough, which makes developing an efficient and effective phishing detection method an urgent need. In this work, we propose a novel phishing website detection approach by detecting the Uniform Resource Locator (URL) of a website, which is proved to be an effective and efficient detection approach. To be specific, our novel capsule-based neural network mainly includes several parallel branches wherein one convolutional layer extracts shallow features from URLs and the subsequent two capsule layers generate accurate feature representations of URLs from the shallow features and discriminate the legitimacy of URLs. The final output of our approach is obtained by averaging the outputs of all branches. Extensive experiments on a validated dataset collected from the Internet demonstrate that our approach can achieve competitive performance against other state-of-the-art detection methods while maintaining a tolerable time overhead.

Bagui, Sikha, Nandi, Debarghya, Bagui, Subhash, White, Robert Jamie.  2019.  Classifying Phishing Email Using Machine Learning and Deep Learning. 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security). :1—2.

In this work, we applied deep semantic analysis, and machine learning and deep learning techniques, to capture inherent characteristics of email text, and classify emails as phishing or non -phishing.

Ikhsan, Mukhammad Gufron, Ramli, Kalamullah.  2019.  Measuring the Information Security Awareness Level of Government Employees Through Phishing Assessment. 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :1—4.

As an important institutional element, government information security is not only related to technical issues but also to human resources. Various types of information security instruments in an institution cannot provide maximum protection as long as employees still have a low level of information security awareness. This study aims to measure the level of information security awareness of government employees through case studies at the Directorate General of ABC (DG ABC) in Indonesia. This study used two methods, behavior approach through phishing simulation and knowledge approach through a questionnaire on a Likert scale. The simulation results were analyzed on a percentage scale and compared to the results of the questionnaire to determine the level of employees' information security awareness and determine which method was the best. Results show a significant relationship between the simulation results and the questionnaire results. Among the employees who opened the email, 69% clicked on the link that led to the camouflage page and through the questionnaire, it was found that the information security awareness level of DG ABC employees was at the level of 79.32% which was the lower limit of the GOOD category.

2020-03-09
Nathezhtha, T., Sangeetha, D., Vaidehi, V..  2019.  WC-PAD: Web Crawling based Phishing Attack Detection. 2019 International Carnahan Conference on Security Technology (ICCST). :1–6.
Phishing is a criminal offense which involves theft of user's sensitive data. The phishing websites target individuals, organizations, the cloud storage hosting sites and government websites. Currently, hardware based approaches for anti-phishing is widely used but due to the cost and operational factors software based approaches are preferred. The existing phishing detection approaches fails to provide solution to problem like zero-day phishing website attacks. To overcome these issues and precisely detect phishing occurrence a three phase attack detection named as Web Crawler based Phishing Attack Detector(WC-PAD) has been proposed. It takes the web traffics, web content and Uniform Resource Locator(URL) as input features, based on these features classification of phishing and non phishing websites are done. The experimental analysis of the proposed WC-PAD is done with datasets collected from real phishing cases. From the experimental results, it is found that the proposed WC-PAD gives 98.9% accuracy in both phishing and zero-day phishing attack detection.
2020-02-26
Bikov, T. D., Iliev, T. B., Mihaylov, Gr. Y., Stoyanov, I. S..  2019.  Phishing in Depth – Modern Methods of Detection and Risk Mitigation. 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :447–450.

Nowadays, everyone is living in a digital world with various of virtual experiences and realities, but all of them may eventually cause real threats in our real world. Some of these threats have been born together with the first electronic mail service. Some of them might be considered as really basic and simple, compared to others that were developed and advanced in time to adapt themselves for the security defense mechanisms of the modern digital world. On a daily basis, more than 238.4 billion emails are sent worldwide, which makes more than 2.7 million emails per second, and these statistics are only from the publicly visible networks. Having that information and considering around 60% and above of all emails as threatening or not legitimate, is more than concerning. Unfortunately, even the modern security measures and systems are not capable to identify and prevent all the fraudulent content that is created and distributed every day. In this paper we will cover the most common attack vectors, involving the already mass email infrastructures, the required contra measures to minimize the impact over the corporate environments and what else should be developed to mitigate the modern sophisticated email attacks.

2020-02-17
Legg, Phil, Blackman, Tim.  2019.  Tools and Techniques for Improving Cyber Situational Awareness of Targeted Phishing Attacks. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–4.

Phishing attacks continue to be one of the most common attack vectors used online today to deceive users, such that attackers can obtain unauthorised access or steal sensitive information. Phishing campaigns often vary in their level of sophistication, from mass distribution of generic content, such as delivery notifications, online purchase orders, and claims of winning the lottery, through to bespoke and highly-personalised messages that convincingly impersonate genuine communications (e.g., spearphishing attacks). There is a distinct trade-off here between the scale of an attack versus the effort required to curate content that is likely to convince an individual to carry out an action (typically, clicking a malicious hyperlink). In this short paper, we conduct a preliminary study on a recent realworld incident that strikes a balance between attacking at scale and personalised content. We adopt different visualisation tools and techniques for better assessing the scale and impact of the attack, that can be used both by security professionals to analyse the security incident, but could also be used to inform employees as a form of security awareness and training. We pitched the approach to IT professionals working in information security, who believe this may provide improved awareness of how targeted phishing campaigns can impact an organisation, and could contribute towards a pro-active step of how analysts will examine and mitigate the impact of future attacks across the organisation.

2020-02-10
Yao, Chuhao, Wang, Jiahong, Kodama, Eiichiro.  2019.  A Spam Review Detection Method by Verifying Consistency among Multiple Review Sites. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2825–2830.

In recent years, websites that incorporate user reviews, such as Amazon, IMDB and YELP, have become exceedingly popular. As an important factor affecting users purchasing behavior, review information has been becoming increasingly important, and accordingly, the reliability of review information becomes an important issue. This paper proposes a method to more accurately detect the appearance period of spam reviews and to identify the spam reviews by verifying the consistency of review information among multiple review sites. Evaluation experiments were conducted to show the accuracy of the detection results, and compared the newly proposed method with our previously proposed method.

Lekha, J., Maheshwaran, J, Tharani, K, Ram, Prathap K, Surya, Murthy K, Manikandan, A.  2019.  Efficient Detection of Spam Messages Using OBF and CBF Blocking Techniques. 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI). :1175–1179.

Emails are the fundamental unit of web applications. There is an exponential growth in sending and receiving emails online. However, spam mail has turned into an intense issue in email correspondence condition. There are number of substance based channel systems accessible to be specific content based filter(CBF), picture based sifting and many other systems to channel spam messages. The existing technological solution consists of a combination of porter stemer algorithm(PSA) and k means clustering which is adaptive in nature. These procedures are more expensive in regard of the calculation and system assets as they required the examination of entire spam message and calculation of the entire substance of the server. These are the channels must additionally not powerful in nature life on the grounds that the idea of spam block mail and spamming changes much of the time. We propose a starting point based spam mail-sifting system benefit, which works considering top head notcher data of the mail message paying little respect to the body substance of the mail. It streamlines the system and server execution by increasing the precision, recall and accuracy than the existing methods. To design an effective and efficient of autonomous and efficient spam detection system to improve network performance from unknown privileged user attacks.

Krause, Tim, Uetz, Rafael, Kretschmann, Tim.  2019.  Recognizing Email Spam from Meta Data Only. 2019 IEEE Conference on Communications and Network Security (CNS). :178–186.

We propose a new spam detection approach based solely on meta data features gained from email headers. The approach achieves above 99 % classification accuracy on the CSDMC2010 dataset, which matches or surpasses state-of-the-art spam classifiers. We utilize a static set of engineered features, supplemented with automatically extracted features. The approach is just as effective for spam detection in end-to-end encryption, as our feature set remains unchanged for encrypted emails. In contrast to most established spam detectors, we disregard the email body completely and can therefore deliver very high classification speeds, as computationally expensive text preprocessing is not necessary.