Visible to the public Biblio

Filters: Keyword is Trustworthy Systems  [Clear All Filters]
2022-08-02
Zhao, Chen, Yin, Jiaqi, Zhu, Huibiao, Li, Ran.  2021.  Modeling and Verifying Ticket-Based Authentication Scheme for IoT Using CSP. 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). :845—852.
Internet of Things (IoT) connects various nodes such as sensor devices. For users from foreign networks, their direct access to the data of sensor devices is restricted because of security threats. Therefore, a ticket-based authentication scheme was proposed, which can mutually authenticate a mobile device and a sensor device. This scheme with new features fills a gap in IoT authentication, but the scheme has not been verified formally. Hence, it is important to study the security and reliability of the scheme from the perspective of formal methods.In this paper, we model this scheme using Communicating Sequential Processes (CSP). Considering the possibility of key leakage caused by security threats in IoT networks, we also build models where one of the keys used in the scheme is leaked. With the model checker Process Analysis Toolkit (PAT), we verify four properties (deadlock freedom, data availability, data security, and data authenticity) and find that the scheme cannot satisfy the last two properties with key leakage. Thus, we propose two improved models. The verification results show that the first improved model can guarantee data security, and the second one can ensure both data security and data authenticity.
Liu, Zhihao, Wang, Qiang, Li, Yongjian, Zhao, Yongxin.  2021.  CMSS: Collaborative Modeling of Safety and Security Requirements for Network Protocols. 2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). :185—192.
Analyzing safety and security requirements remains a difficult task in the development of real-life network protocols. Although numerous modeling and analyzing methods have been proposed in the past decades, most of them handle safety and security requirements separately without considering their interplay. In this work, we propose a collaborative modeling framework that enables co-analysis of safety and security requirements for network protocols. Our modeling framework is based on a well-defined type system and supports modeling of network topology, message flows, protocol behaviors and attacker behaviors. It also supports the specification of safety requirements as temporal logical formulae and typical security requirements as queries, and leverages on the existing verification tools for formal safety and security analysis via model transformations. We have implemented this framework in a prototype tool CMSS, and illustrated the capability of CMSS by using the 5G AKA initialization protocol as a case study.
Jero, Samuel, Furgala, Juliana, Pan, Runyu, Gadepalli, Phani Kishore, Clifford, Alexandra, Ye, Bite, Khazan, Roger, Ward, Bryan C., Parmer, Gabriel, Skowyra, Richard.  2021.  Practical Principle of Least Privilege for Secure Embedded Systems. 2021 IEEE 27th Real-Time and Embedded Technology and Applications Symposium (RTAS). :1—13.

Many embedded systems have evolved from simple bare-metal control systems to highly complex network-connected systems. These systems increasingly demand rich and feature-full operating-systems (OS) functionalities. Furthermore, the network connectedness offers attack vectors that require stronger security designs. To that end, this paper defines a prototypical RTOS API called Patina that provides services common in featurerich OSes (e.g., Linux) but absent in more trustworthy μ -kernel based systems. Examples of such services include communication channels, timers, event management, and synchronization. Two Patina implementations are presented, one on Composite and the other on seL4, each of which is designed based on the Principle of Least Privilege (PoLP) to increase system security. This paper describes how each of these μ -kernels affect the PoLP based design, as well as discusses security and performance tradeoffs in the two implementations. Results of comprehensive evaluations demonstrate that the performance of the PoLP based implementation of Patina offers comparable or superior performance to Linux, while offering heightened isolation.

Hardin, David S., Slind, Konrad L..  2021.  Formal Synthesis of Filter Components for Use in Security-Enhancing Architectural Transformations. 2021 IEEE Security and Privacy Workshops (SPW). :111—120.

Safety- and security-critical developers have long recognized the importance of applying a high degree of scrutiny to a system’s (or subsystem’s) I/O messages. However, lack of care in the development of message-handling components can lead to an increase, rather than a decrease, in the attack surface. On the DARPA Cyber-Assured Systems Engineering (CASE) program, we have focused our research effort on identifying cyber vulnerabilities early in system development, in particular at the Architecture development phase, and then automatically synthesizing components that mitigate against the identified vulnerabilities from high-level specifications. This approach is highly compatible with the goals of the LangSec community. Advances in formal methods have allowed us to produce hardware/software implementations that are both performant and guaranteed correct. With these tools, we can synthesize high-assurance “building blocks” that can be composed automatically with high confidence to create trustworthy systems, using a method we call Security-Enhancing Architectural Transformations. Our synthesis-focused approach provides a higherleverage insertion point for formal methods than is possible with post facto analytic methods, as the formal methods tools directly contribute to the implementation of the system, without requiring developers to become formal methods experts. Our techniques encompass Systems, Hardware, and Software Development, as well as Hardware/Software Co-Design/CoAssurance. We illustrate our method and tools with an example that implements security-improving transformations on system architectures expressed using the Architecture Analysis and Design Language (AADL). We show how message-handling components can be synthesized from high-level regular or context-free language specifications, as well as a novel specification language for self-describing messages called Contiguity Types, and verified to meet arithmetic constraints extracted from the AADL model. Finally, we guarantee that the intent of the message processing logic is accurately reflected in the application binary code through the use of the verified CakeML compiler, in the case of software, or the Restricted Algorithmic C toolchain with ACL2-based formal verification, in the case of hardware/software co-design.

Yeboah-Ofori, Abel, Agbodza, Christian Kwame, Opoku-Boateng, Francisca Afua, Darvishi, Iman, Sbai, Fatim.  2021.  Applied Cryptography in Network Systems Security for Cyberattack Prevention. 2021 International Conference on Cyber Security and Internet of Things (ICSIoT). :43—48.
Application of cryptography and how various encryption algorithms methods are used to encrypt and decrypt data that traverse the network is relevant in securing information flows. Implementing cryptography in a secure network environment requires the application of secret keys, public keys, and hash functions to ensure data confidentiality, integrity, authentication, and non-repudiation. However, providing secure communications to prevent interception, interruption, modification, and fabrication on network systems has been challenging. Cyberattacks are deploying various methods and techniques to break into network systems to exploit digital signatures, VPNs, and others. Thus, it has become imperative to consider applying techniques to provide secure and trustworthy communication and computing using cryptography methods. The paper explores applied cryptography concepts in information and network systems security to prevent cyberattacks and improve secure communications. The contribution of the paper is threefold: First, we consider the various cyberattacks on the different cryptography algorithms in symmetric, asymmetric, and hashing functions. Secondly, we apply the various RSA methods on a network system environment to determine how the cyberattack could intercept, interrupt, modify, and fabricate information. Finally, we discuss the secure implementations methods and recommendations to improve security controls. Our results show that we could apply cryptography methods to identify vulnerabilities in the RSA algorithm in secure computing and communications networks.
McCormack, Matt, Vasudevan, Amit, Liu, Guyue, Sekar, Vyas.  2021.  Formalizing an Architectural Model of a Trustworthy Edge IoT Security Gateway. 2021 IEEE 27th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). :93—102.
Today’s edge networks continue to see an increasing number of deployed IoT devices. These IoT devices aim to increase productivity and efficiency; however, they are plagued by a myriad of vulnerabilities. Industry and academia have proposed protecting these devices by deploying a “bolt-on” security gateway to these edge networks. The gateway applies security protections at the network level. While security gateways are an attractive solution, they raise a fundamental concern: Can the bolt-on security gateway be trusted? This paper identifies key challenges in realizing this goal and sketches a roadmap for providing trust in bolt-on edge IoT security gateways. Specifically, we show the promise of using a micro-hypervisor driven approach for delivering practical (deployable today) trust that is catered to both end-users and gateway vendors alike in terms of cost, generality, capabilities, and performance. We describe the challenges in establishing trust on today’s edge security gateways, formalize the adversary and trust properties, describe our system architecture, encode and prove our architecture trust properties using the Alloy formal modeling language. We foresee our trustworthy security gateway architecture becoming a practical and extensible formal foundation towards realizing robust trust properties on today’s edge security gateway implementations.
Karthikeyan, P., Anandaraj, S.P., Vignesh, R., Poornima, S..  2021.  Review on Trustworthy Analysis in binary code. 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS). 1:1386—1389.
The software industry is dominating many are like health care, finance, agriculture and entertainment. Software security has become an essential issue-outsider libraries, which assume a significant part in programming. The finding weaknesses in the binary code is a significant issue that presently cannot seem to be handled, as showed by numerous weaknesses wrote about an everyday schedule. Software seller sells the software to the client if the client wants to check the software's vulnerability it is a cumbersome task. Presently many deep learning-based methods also introduced to find the security weakness in the binary code. This paper present the merits and demerits of binary code analysis used by a different method.
2022-07-13
Zuo, Jinxin, Guo, Ziyu, Gan, Jiefu, Lu, Yueming.  2021.  Enhancing Continuous Service of Information Systems Based on Cyber Resilience. 2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC). :535—542.

Cyber resilience has become a strategic point of information security in recent years. In the face of complex attack means and severe internal and external threats, it is difficult to achieve 100% protection against information systems. It is necessary to enhance the continuous service of information systems based on network resiliency and take appropriate compensation measures in case of protection failure, to ensure that the mission can still be achieved under attack. This paper combs the definition, cycle, and state of cyber resilience, and interprets the cyber resiliency engineering framework, to better understand cyber resilience. In addition, we also discuss the evolution of security architecture and analyze the impact of cyber resiliency on security architecture. Finally, the strategies and schemes of enhancing cyber resilience represented by zero trust and endogenous security are discussed.

2022-05-19
Perrone, Paola, Flammini, Francesco, Setola, Roberto.  2021.  Machine Learning for Threat Recognition in Critical Cyber-Physical Systems. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :298–303.

Cybersecurity has become an emerging challenge for business information management and critical infrastructure protection in recent years. Artificial Intelligence (AI) has been widely used in different fields, but it is still relatively new in the area of Cyber-Physical Systems (CPS) security. In this paper, we provide an approach based on Machine Learning (ML) to intelligent threat recognition to enable run-time risk assessment for superior situation awareness in CPS security monitoring. With the aim of classifying malicious activity, several machine learning methods, such as k-nearest neighbours (kNN), Naïve Bayes (NB), Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF), have been applied and compared using two different publicly available real-world testbeds. The results show that RF allowed for the best classification performance. When used in reference industrial applications, the approach allows security control room operators to get notified of threats only when classification confidence will be above a threshold, hence reducing the stress of security managers and effectively supporting their decisions.

2022-03-01
Salem, Heba, Topham, Nigel.  2021.  Trustworthy Computing on Untrustworthy and Trojan-Infected on-Chip Interconnects. 2021 IEEE European Test Symposium (ETS). :1–2.
This paper introduces a scheme for achieving trustworthy computing on SoCs that use an outsourced AXI interconnect for on-chip communication. This is achieved through component guarding, data tagging, event verification, and consequently responding dynamically to an attack. Experimental results confirm the ability of the proposed scheme to detect HT attacks and respond to them at run-time. The proposed scheme extends the state-of-art in trustworthy computing on untrustworthy components by focusing on the issue of an untrusted on-chip interconnect for the first time, and by developing a scheme that is independent of untrusted third-party IP.
2021-11-08
Karode, Tanakorn, Werapun, Warodom.  2020.  Performance Analysis of Trustworthy Online Review System Using Blockchain. 2020 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :510–513.
Today, the online review system cannot fully support the business since there are fraudulent activities inside. The companies that get low score reviews are induced to raise their score for the market competition capability by paying to the platform for deleting or editing the posted reviews. Moreover, the automatic filtration system of a platform removes some reviews without the awareness of the users. The low transparency platform causes low credibility toward the reviews. Blockchain technology provides exceptionally high transparency since every action can be traced publicly. However, there are some tradeoffs that need to be considered, such as cost and response time. This work tends to find the potential of using Blockchain technology in the online review system by testing four implementation approaches of the Ethereum Smart Contract. The result illustrates that using IPFS to store the data is a practical way of reducing transaction costs. Besides, preventing using Smart Contract states can significantly reduce costs too. The response time for using the Blockchain and IPFS system is slower than the centralized system. However, posting a review does not need a fast response. Thus, it is worthy of trading response time with transparency and cost. In the business view, the review posting with cost causes more difficulty to generate fake reviews. Moreover, there are other advantages over the centralized system, such as the reward system, bogus review voting, and global database. Thus, credibility improvement for a consumer online review system is a potential application of Blockchain technology.
Ganguli, Subhankar, Thakur, Sanjeev.  2020.  Machine Learning Based Recommendation System. 2020 10th International Conference on Cloud Computing, Data Science Engineering (Confluence). :660–664.
Recommender system helps people in decision making by asking their preferences about various items and recommends other items that have not been rated yet and are similar to their taste. A traditional recommendation system aims at generating a set of recommendations based on inter-user similarity that will satisfy the target user. Positive preferences as well as negative preferences of the users are taken into account so as to find strongly related users. Weighted entropy is usedz as a similarity measure to determine the similar taste users. The target user is asked to fill in the ratings so as to identify the closely related users from the knowledge base and top N recommendations are produced accordingly. Results show a considerable amount of improvement in accuracy after using weighted entropy and opposite preferences as a similarity measure.
Varshney, Kush R..  2020.  On Mismatched Detection and Safe, Trustworthy Machine Learning. 2020 54th Annual Conference on Information Sciences and Systems (CISS). :1–4.
Instilling trust in high-stakes applications of machine learning is becoming essential. Trust may be decomposed into four dimensions: basic accuracy, reliability, human interaction, and aligned purpose. The first two of these also constitute the properties of safe machine learning systems. The second dimension, reliability, is mainly concerned with being robust to epistemic uncertainty and model mismatch. It arises in the machine learning paradigms of distribution shift, data poisoning attacks, and algorithmic fairness. All of these problems can be abstractly modeled using the theory of mismatched hypothesis testing from statistical signal processing. By doing so, we can take advantage of performance characterizations in that literature to better understand the various machine learning issues.
Marino, Daniel L., Grandio, Javier, Wickramasinghe, Chathurika S., Schroeder, Kyle, Bourne, Keith, Filippas, Afroditi V., Manic, Milos.  2020.  AI Augmentation for Trustworthy AI: Augmented Robot Teleoperation. 2020 13th International Conference on Human System Interaction (HSI). :155–161.
Despite the performance of state-of-the-art Artificial Intelligence (AI) systems, some sectors hesitate to adopt AI because of a lack of trust in these systems. This attitude is prevalent among high-risk areas, where there is a reluctance to remove humans entirely from the loop. In these scenarios, Augmentation provides a preferred alternative over complete Automation. Instead of replacing humans, AI Augmentation uses AI to improve and support human operations, creating an environment where humans work side by side with AI systems. In this paper, we discuss how AI Augmentation can provide a path for building Trustworthy AI. We exemplify this approach using Robot Teleoperation. We lay out design guidelines and motivations for the development of AI Augmentation for Robot Teleoperation. Finally, we discuss the design of a Robot Teleoperation testbed for the development of AI Augmentation systems.
He, Hongmei, Gray, John, Cangelosi, Angelo, Meng, Qinggang, McGinnity, T. M., Mehnen, Jörn.  2020.  The Challenges and Opportunities of Artificial Intelligence for Trustworthy Robots and Autonomous Systems. 2020 3rd International Conference on Intelligent Robotic and Control Engineering (IRCE). :68–74.
Trust is essential in designing autonomous and semiautonomous Robots and Autonomous Systems (RAS), because of the ``No trust, no use'' concept. RAS should provide high quality services, with four key properties that make them trustworthy: they must be (i) robust with regards to any system health related issues, (ii) safe for any matters in their surrounding environments, (iii) secure against any threats from cyber spaces, and (iv) trusted for human-machine interaction. This article thoroughly analyses the challenges in implementing the trustworthy RAS in respects of the four properties, and addresses the power of AI in improving the trustworthiness of RAS. While we focus on the benefits that AI brings to human, we should realize the potential risks that could be caused by AI. This article introduces for the first time the set of key aspects of human-centered AI for RAS, which can serve as a cornerstone for implementing trustworthy RAS by design in the future.
Zhao, Zhiming, Rong, Chunming, Jaatun, Martin Gilje.  2020.  A Trustworthy Blockchain-Based Decentralised Resource Management System in the Cloud. 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS). :617–624.
Quality Critical Decentralised Applications (QC-DApp) have high requirements for system performance and service quality, involve heterogeneous infrastructures (Clouds, Fogs, Edges and IoT), and rely on the trustworthy collaborations among participants of data sources and infrastructure providers to deliver their business value. The development of the QCDApp has to tackle the low-performance challenge of the current blockchain technologies due to the low collaboration efficiency among distributed peers for consensus. On the other hand, the resilience of the Cloud has enabled significant advances in software-defined storage, networking, infrastructure, and every technology; however, those rich programmabilities of infrastructure (in particular, the advances of new hardware accelerators in the infrastructures) can still not be effectively utilised for QCDApp due to lack of suitable architecture and programming model.
Liu, Qian, de Simone, Robert, Chen, Xiaohong, Kang, Jiexiang, Liu, Jing, Yin, Wei, Wang, Hui.  2020.  Multiform Logical Time Amp; Space for Mobile Cyber-Physical System With Automated Driving Assistance System. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :415–424.
We study the use of Multiform Logical Time, as embodied in Esterel/SyncCharts and Clock Constraint Specification Language (CCSL), for the specification of assume-guarantee constraints providing safe driving rules related to time and space, in the context of Automated Driving Assistance Systems (ADAS). The main novelty lies in the use of logical clocks to represent the epochs of specific area encounters (when particular area trajectories just start overlapping for instance), thereby combining time and space constraints by CCSL to build safe driving rules specification. We propose the safe specification pattern at high-level that provide the required expressiveness for safe driving rules specification. In the pattern, multiform logical time provides the power of parameterization to express safe driving rules, before instantiation in further simulation contexts. We present an efficient way to irregularly update the constraints in the specification due to the context changes, where elements (other cars, road sections, traffic signs) may dynamically enter and exit the scene. In this way, we add constraints for the new elements and remove the constraints related to the disappearing elements rather than rebuild everything. The multi-lane highway scenario is used to illustrate how to irregularly and efficiently update the constraints in the specification while receiving a fresh scene.
Martin, Robert Alan.  2020.  Assurance for CyberPhysical Systems: Addressing Supply Chain Challenges to Trustworthy Software-Enabled Things. 2020 IEEE Systems Security Symposium (SSS). :1–5.
Software is playing a pivotal role in most enterprises, whether they realize it or not, and with the proliferation of Industrial Internet of Things (IoT) and other CyberPhysical systems across our society and critical infrastructure and our collective love affair with automation, optimization, and ``smart'' devices, the role of these types of systems is only going to increase. This talk addresses the myriad of issues that underlie unsafe, insecure, and unreliable software and provides the insights of the Industrial Internet Consortium and other government and industry efforts on how to conquer them and pave the way to a marketplace of trustworthy software-enabled connected things. As the experience of several sectors has shown, the dependence on connected software needs to be met with a strong understanding of the risks to the overall trustworthiness of our software-based capabilities that we, our enterprises, and our world utilize. In many of these new connected systems issues of safety, reliability, and resilience rival or dominate concerns for security and privacy, the long-time focus of many in the IT world. Without a scalable and efficient method for managing these risks so our enterprises can continue to benefit from these advancements that powers our military, commercial industries, cities, and homes to new levels of efficiency, versatility, and cost effectiveness we face the potential for harm, death, and destructiveness. In such a marketplace, creating, exchanging, and integrating components that are trustworthy as well as entering into value-chain relationships with trustworthy partners and service suppliers will be common if we can provide a method for explicitly defining what is meant by the word trustworthy. The approach being pursued by these groups for applying Software Assurance to these systems and their Supply Chains by leveraging Structured Assurance Cases (the focus of this paper), Software Bill of Materials, and secure development practices applied to the evolving Agile and DevSecOps methodologies, is to explicitly identify the detailed requirements ``about what we need to know about something for it to be worthy of our trust'' and to do that in a way that we can convey that basis of trust to others that: can scale; is consistent within different workflows; is flexible to differing sets of hazards and environments; and is applicable to all sectors, domains, and industries.
Martin, Robert Alan.  2020.  Visibility Amp; Control: Addressing Supply Chain Challenges to Trustworthy Software-Enabled Things. 2020 IEEE Systems Security Symposium (SSS). :1–4.
Software is playing a pivotal role in most enterprises, whether they realize it or not, and with the proliferation of Industrial Internet of Things (IoT) and other cyber/physical systems across our society and critical infrastructure and our collective love affair with automation, optimization, and ``smart'' devices, the role of these types of systems is only going to increase. This talk addresses the myriad of issues that underlie unsafe, insecure, and unreliable software and provides the insights of the Industrial Internet Consortium and other government and industry efforts on how to conquer them and pave the way to a marketplace of trustworthy software-enabled connected things.As the experience of several sectors has shown, the dependence on connected software needs to be met with a strong understanding of the risks to the overall trustworthiness of our software-based capabilities that we, our enterprises, and our world utilize. In many of these new connected systems issues of safety, reliability, and resilience rival or dominate concerns for security and privacy, the long-time focus of many in the IT world. Without a scalable and efficient method for managing these risks so our enterprises can continue to benefit from these advancements that powers our military, commercial industries, cities, and homes to new levels of efficiency, versatility, and cost effectiveness we face the potential for harm, death, and destructiveness.In such a marketplace, creating, exchanging, and integrating components that are trustworthy as well as entering into value-chain relationships with trustworthy partners and service suppliers will be common if we can provide a method for explicitly defining what is meant by the word trustworthy. The approach being pursued by these groups for applying Software Assurance to these systems and their Supply Chains by leveraging Structured Assurance Cases, Software Bill of Materials (the focus of this paper), and secure development practices applied to the evolving Agile and DevSecOps methodologies, is to explicitly identify the detailed requirements ``about what we need to know about something for it to be worthy of our trust'' and to do that in a way that we can convey that basis of trust to others that: can scale; is consistent within different workflows; is flexible to differing sets of hazards and environments; and is applicable to all sectors, domains, and industries.
2021-06-30
ur Rahman, Hafiz, Duan, Guihua, Wang, Guojun, Bhuiyan, Md Zakirul Alam, Chen, Jianer.  2020.  Trustworthy Data Acquisition and Faulty Sensor Detection using Gray Code in Cyber-Physical System. 2020 IEEE 23rd International Conference on Computational Science and Engineering (CSE). :58—65.
Due to environmental influence and technology limitation, a wireless sensor/sensors module can neither store or process all raw data locally nor reliably forward it to a destination in heterogeneous IoT environment. As a result, the data collected by the IoT's sensors are inherently noisy, unreliable, and may trigger many false alarms. These false or misleading data can lead to wrong decisions once the data reaches end entities. Therefore, it is highly recommended and desirable to acquire trustworthy data before data transmission, aggregation, and data storing at the end entities/cloud. In this paper, we propose an In-network Generalized Trustworthy Data Collection (IGTDC) framework for trustworthy data acquisition and faulty sensor detection in the IoT environment. The key idea of IGTDC is to allow a sensor's module to examine locally whether the raw data is trustworthy before transmitting towards upstream nodes. It further distinguishes whether the acquired data can be trusted or not before data aggregation at the sink/edge node. Besides, IGTDC helps to recognize a faulty or compromised sensor. For a reliable data collection, we use collaborative IoT technique, gate-level modeling, and programmable logic device (PLD) to ensure that the acquired data is reliable before transmitting towards upstream nodes/cloud. We use a hardware-based technique called “Gray Code” to detect a faulty sensor. Through simulations we reveal that the acquired data in IGTDC framework is reliable that can make a trustworthy data collection for event detection, and assist to distinguish a faulty sensor.
2021-03-29
DiMase, D., Collier, Z. A., Chandy, J., Cohen, B. S., D'Anna, G., Dunlap, H., Hallman, J., Mandelbaum, J., Ritchie, J., Vessels, L..  2020.  A Holistic Approach to Cyber Physical Systems Security and Resilience. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A critical need exists for collaboration and action by government, industry, and academia to address cyber weaknesses or vulnerabilities inherent to embedded or cyber physical systems (CPS). These vulnerabilities are introduced as we leverage technologies, methods, products, and services from the global supply chain throughout a system's lifecycle. As adversaries are exploiting these weaknesses as access points for malicious purposes, solutions for system security and resilience become a priority call for action. The SAE G-32 Cyber Physical Systems Security Committee has been convened to address this complex challenge. The SAE G-32 will take a holistic systems engineering approach to integrate system security considerations to develop a Cyber Physical System Security Framework. This framework is intended to bring together multiple industries and develop a method and common language which will enable us to more effectively, efficiently, and consistently communicate a risk, cost, and performance trade space. The standard will allow System Integrators to make decisions utilizing a common framework and language to develop affordable, trustworthy, resilient, and secure systems.

2020-04-13
Horne, Benjamin D., Gruppi, Mauricio, Adali, Sibel.  2019.  Trustworthy Misinformation Mitigation with Soft Information Nudging. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :245–254.

Research in combating misinformation reports many negative results: facts may not change minds, especially if they come from sources that are not trusted. Individuals can disregard and justify lies told by trusted sources. This problem is made even worse by social recommendation algorithms which help amplify conspiracy theories and information confirming one's own biases due to companies' efforts to optimize for clicks and watch time over individuals' own values and public good. As a result, more nuanced voices and facts are drowned out by a continuous erosion of trust in better information sources. Most misinformation mitigation techniques assume that discrediting, filtering, or demoting low veracity information will help news consumers make better information decisions. However, these negative results indicate that some news consumers, particularly extreme or conspiracy news consumers will not be helped. We argue that, given this background, technology solutions to combating misinformation should not simply seek facts or discredit bad news sources, but instead use more subtle nudges towards better information consumption. Repeated exposure to such nudges can help promote trust in better information sources and also improve societal outcomes in the long run. In this article, we will talk about technological solutions that can help us in developing such an approach, and introduce one such model called Trust Nudging.

Agostino Ardagna, Claudio, Asal, Rasool, Damiani, Ernesto, El Ioini, Nabil, Pahl, Claus.  2019.  Trustworthy IoT: An Evidence Collection Approach Based on Smart Contracts. 2019 IEEE International Conference on Services Computing (SCC). :46–50.
Today, Internet of Things (IoT) implements an ecosystem where a panoply of interconnected devices collect data from physical environments and supply them to processing services, on top of which cloud-based applications are built and provided to mobile end users. The undebatable advantages of smart IoT systems clash with the need of a secure and trustworthy environment. In this paper, we propose a service-based methodology based on blockchain and smart contracts for trustworthy evidence collection at the basis of a trustworthy IoT assurance evaluation. The methodology balances the provided level of trustworthiness and its performance, and is experimentally evaluated using Hyperledger fabric blockchain.
Heiss, Jonathan, Eberhardt, Jacob, Tai, Stefan.  2019.  From Oracles to Trustworthy Data On-Chaining Systems. 2019 IEEE International Conference on Blockchain (Blockchain). :496–503.
Many blockchain transactions require blockchain-external data sources to provide data. Oracle systems have been proposed as a link between blockchains and blockchain-external resources. However, these Oracle systems vary greatly in assumptions and applicability and each system addresses the challenge of data on-chaining partly. We argue that Data On-chaining must be done in a trustworthy manner and, as a first contribution, define a set of key requirements for Trustworthy Data On-chaining. Further, we provide an in-depth assessment and comparison of state-of-the-art Oracle systems with regards to these requirements. This differentiation pinpoints the need for a uniform understanding of and directions for future research on Trustworthy Data On-chaining.
Mohanta, Bhabendu K., Panda, Soumyashree S., Satapathy, Utkalika, Jena, Debasish, Gountia, Debasis.  2019.  Trustworthy Management in Decentralized IoT Application using Blockchain. 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–5.
Internet of Things (IoT) as per estimated will connect 50 billion devices by 2020. Since its evolution, IoT technology provides lots of flexibility to develop and implement any application. Most of the application improves the human living standard and also makes life easy to access and monitoring the things in real time. Though there exist some security and privacy issues in IoT system like authentication, computation, data modification, trust among users. In this paper, we have identified the IoT application like insurance, supply chain system, smart city and smart car where trust among associated users is an major issue. The current centralized system does not provide enough trust between users. Using Blockchain technology we have shown that trust issue among users can be managed in a decentralized way so that information can be traceable and identify/verify any time. Blockchain has properties like distributed, digitally share and immutable which enhance security. For Blockchain implementation, Ethereum platform is used.